You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
300 lines
12 KiB
300 lines
12 KiB
/*
|
|
* Copyright (C) 2017 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "load_store_analysis.h"
|
|
|
|
#include "base/scoped_arena_allocator.h"
|
|
#include "optimizing/escape.h"
|
|
|
|
namespace art {
|
|
|
|
// A cap for the number of heap locations to prevent pathological time/space consumption.
|
|
// The number of heap locations for most of the methods stays below this threshold.
|
|
constexpr size_t kMaxNumberOfHeapLocations = 32;
|
|
|
|
// Test if two integer ranges [l1,h1] and [l2,h2] overlap.
|
|
// Note that the ranges are inclusive on both ends.
|
|
// l1|------|h1
|
|
// l2|------|h2
|
|
static bool CanIntegerRangesOverlap(int64_t l1, int64_t h1, int64_t l2, int64_t h2) {
|
|
return std::max(l1, l2) <= std::min(h1, h2);
|
|
}
|
|
|
|
static bool CanBinaryOpAndIndexAlias(const HBinaryOperation* idx1,
|
|
const size_t vector_length1,
|
|
const HInstruction* idx2,
|
|
const size_t vector_length2) {
|
|
if (!IsAddOrSub(idx1)) {
|
|
// We currently only support Add and Sub operations.
|
|
return true;
|
|
}
|
|
if (idx1->AsBinaryOperation()->GetLeastConstantLeft() != idx2) {
|
|
// Cannot analyze [i+CONST1] and [j].
|
|
return true;
|
|
}
|
|
if (!idx1->GetConstantRight()->IsIntConstant()) {
|
|
return true;
|
|
}
|
|
|
|
// Since 'i' are the same in [i+CONST] and [i],
|
|
// further compare [CONST] and [0].
|
|
int64_t l1 = idx1->IsAdd() ?
|
|
idx1->GetConstantRight()->AsIntConstant()->GetValue() :
|
|
-idx1->GetConstantRight()->AsIntConstant()->GetValue();
|
|
int64_t l2 = 0;
|
|
int64_t h1 = l1 + (vector_length1 - 1);
|
|
int64_t h2 = l2 + (vector_length2 - 1);
|
|
return CanIntegerRangesOverlap(l1, h1, l2, h2);
|
|
}
|
|
|
|
static bool CanBinaryOpsAlias(const HBinaryOperation* idx1,
|
|
const size_t vector_length1,
|
|
const HBinaryOperation* idx2,
|
|
const size_t vector_length2) {
|
|
if (!IsAddOrSub(idx1) || !IsAddOrSub(idx2)) {
|
|
// We currently only support Add and Sub operations.
|
|
return true;
|
|
}
|
|
if (idx1->AsBinaryOperation()->GetLeastConstantLeft() !=
|
|
idx2->AsBinaryOperation()->GetLeastConstantLeft()) {
|
|
// Cannot analyze [i+CONST1] and [j+CONST2].
|
|
return true;
|
|
}
|
|
if (!idx1->GetConstantRight()->IsIntConstant() ||
|
|
!idx2->GetConstantRight()->IsIntConstant()) {
|
|
return true;
|
|
}
|
|
|
|
// Since 'i' are the same in [i+CONST1] and [i+CONST2],
|
|
// further compare [CONST1] and [CONST2].
|
|
int64_t l1 = idx1->IsAdd() ?
|
|
idx1->GetConstantRight()->AsIntConstant()->GetValue() :
|
|
-idx1->GetConstantRight()->AsIntConstant()->GetValue();
|
|
int64_t l2 = idx2->IsAdd() ?
|
|
idx2->GetConstantRight()->AsIntConstant()->GetValue() :
|
|
-idx2->GetConstantRight()->AsIntConstant()->GetValue();
|
|
int64_t h1 = l1 + (vector_length1 - 1);
|
|
int64_t h2 = l2 + (vector_length2 - 1);
|
|
return CanIntegerRangesOverlap(l1, h1, l2, h2);
|
|
}
|
|
|
|
// Make sure we mark any writes/potential writes to heap-locations within partially
|
|
// escaped values as escaping.
|
|
void ReferenceInfo::PrunePartialEscapeWrites() {
|
|
DCHECK(subgraph_ != nullptr);
|
|
if (!subgraph_->IsValid()) {
|
|
// All paths escape.
|
|
return;
|
|
}
|
|
HGraph* graph = reference_->GetBlock()->GetGraph();
|
|
ArenaBitVector additional_exclusions(
|
|
allocator_, graph->GetBlocks().size(), false, kArenaAllocLSA);
|
|
for (const HUseListNode<HInstruction*>& use : reference_->GetUses()) {
|
|
const HInstruction* user = use.GetUser();
|
|
if (!additional_exclusions.IsBitSet(user->GetBlock()->GetBlockId()) &&
|
|
subgraph_->ContainsBlock(user->GetBlock()) &&
|
|
(user->IsUnresolvedInstanceFieldSet() || user->IsUnresolvedStaticFieldSet() ||
|
|
user->IsInstanceFieldSet() || user->IsStaticFieldSet() || user->IsArraySet()) &&
|
|
(reference_ == user->InputAt(0)) &&
|
|
std::any_of(subgraph_->UnreachableBlocks().begin(),
|
|
subgraph_->UnreachableBlocks().end(),
|
|
[&](const HBasicBlock* excluded) -> bool {
|
|
return reference_->GetBlock()->GetGraph()->PathBetween(excluded,
|
|
user->GetBlock());
|
|
})) {
|
|
// This object had memory written to it somewhere, if it escaped along
|
|
// some paths prior to the current block this write also counts as an
|
|
// escape.
|
|
additional_exclusions.SetBit(user->GetBlock()->GetBlockId());
|
|
}
|
|
}
|
|
if (UNLIKELY(additional_exclusions.IsAnyBitSet())) {
|
|
for (uint32_t exc : additional_exclusions.Indexes()) {
|
|
subgraph_->RemoveBlock(graph->GetBlocks()[exc]);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool HeapLocationCollector::InstructionEligibleForLSERemoval(HInstruction* inst) const {
|
|
if (inst->IsNewInstance()) {
|
|
return !inst->AsNewInstance()->NeedsChecks();
|
|
} else if (inst->IsNewArray()) {
|
|
HInstruction* array_length = inst->AsNewArray()->GetLength();
|
|
bool known_array_length =
|
|
array_length->IsIntConstant() && array_length->AsIntConstant()->GetValue() >= 0;
|
|
return known_array_length &&
|
|
std::all_of(inst->GetUses().cbegin(),
|
|
inst->GetUses().cend(),
|
|
[&](const HUseListNode<HInstruction*>& user) {
|
|
if (user.GetUser()->IsArrayGet() || user.GetUser()->IsArraySet()) {
|
|
return user.GetUser()->InputAt(1)->IsIntConstant();
|
|
}
|
|
return true;
|
|
});
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void ReferenceInfo::CollectPartialEscapes(HGraph* graph) {
|
|
ScopedArenaAllocator saa(graph->GetArenaStack());
|
|
ArenaBitVector seen_instructions(&saa, graph->GetCurrentInstructionId(), false, kArenaAllocLSA);
|
|
// Get regular escapes.
|
|
ScopedArenaVector<HInstruction*> additional_escape_vectors(saa.Adapter(kArenaAllocLSA));
|
|
LambdaEscapeVisitor scan_instructions([&](HInstruction* escape) -> bool {
|
|
HandleEscape(escape);
|
|
// LSE can't track heap-locations through Phi and Select instructions so we
|
|
// need to assume all escapes from these are escapes for the base reference.
|
|
if ((escape->IsPhi() || escape->IsSelect()) && !seen_instructions.IsBitSet(escape->GetId())) {
|
|
seen_instructions.SetBit(escape->GetId());
|
|
additional_escape_vectors.push_back(escape);
|
|
}
|
|
return true;
|
|
});
|
|
additional_escape_vectors.push_back(reference_);
|
|
while (!additional_escape_vectors.empty()) {
|
|
HInstruction* ref = additional_escape_vectors.back();
|
|
additional_escape_vectors.pop_back();
|
|
DCHECK(ref == reference_ || ref->IsPhi() || ref->IsSelect()) << *ref;
|
|
VisitEscapes(ref, scan_instructions);
|
|
}
|
|
|
|
// Mark irreducible loop headers as escaping since they cannot be tracked through.
|
|
for (HBasicBlock* blk : graph->GetActiveBlocks()) {
|
|
if (blk->IsLoopHeader() && blk->GetLoopInformation()->IsIrreducible()) {
|
|
HandleEscape(blk);
|
|
}
|
|
}
|
|
}
|
|
|
|
void HeapLocationCollector::DumpReferenceStats(OptimizingCompilerStats* stats) {
|
|
if (stats == nullptr) {
|
|
return;
|
|
}
|
|
std::vector<bool> seen_instructions(GetGraph()->GetCurrentInstructionId(), false);
|
|
for (auto hl : heap_locations_) {
|
|
auto ri = hl->GetReferenceInfo();
|
|
if (ri == nullptr || seen_instructions[ri->GetReference()->GetId()]) {
|
|
continue;
|
|
}
|
|
auto instruction = ri->GetReference();
|
|
seen_instructions[instruction->GetId()] = true;
|
|
if (ri->IsSingletonAndRemovable()) {
|
|
if (InstructionEligibleForLSERemoval(instruction)) {
|
|
MaybeRecordStat(stats, MethodCompilationStat::kFullLSEPossible);
|
|
}
|
|
}
|
|
// TODO This is an estimate of the number of allocations we will be able
|
|
// to (partially) remove. As additional work is done this can be refined.
|
|
if (ri->IsPartialSingleton() && instruction->IsNewInstance() &&
|
|
ri->GetNoEscapeSubgraph()->ContainsBlock(instruction->GetBlock()) &&
|
|
!ri->GetNoEscapeSubgraph()->GetExcludedCohorts().empty() &&
|
|
InstructionEligibleForLSERemoval(instruction)) {
|
|
MaybeRecordStat(stats, MethodCompilationStat::kPartialLSEPossible);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool HeapLocationCollector::CanArrayElementsAlias(const HInstruction* idx1,
|
|
const size_t vector_length1,
|
|
const HInstruction* idx2,
|
|
const size_t vector_length2) const {
|
|
DCHECK(idx1 != nullptr);
|
|
DCHECK(idx2 != nullptr);
|
|
DCHECK_GE(vector_length1, HeapLocation::kScalar);
|
|
DCHECK_GE(vector_length2, HeapLocation::kScalar);
|
|
|
|
// [i] and [i].
|
|
if (idx1 == idx2) {
|
|
return true;
|
|
}
|
|
|
|
// [CONST1] and [CONST2].
|
|
if (idx1->IsIntConstant() && idx2->IsIntConstant()) {
|
|
int64_t l1 = idx1->AsIntConstant()->GetValue();
|
|
int64_t l2 = idx2->AsIntConstant()->GetValue();
|
|
// To avoid any overflow in following CONST+vector_length calculation,
|
|
// use int64_t instead of int32_t.
|
|
int64_t h1 = l1 + (vector_length1 - 1);
|
|
int64_t h2 = l2 + (vector_length2 - 1);
|
|
return CanIntegerRangesOverlap(l1, h1, l2, h2);
|
|
}
|
|
|
|
// [i+CONST] and [i].
|
|
if (idx1->IsBinaryOperation() &&
|
|
idx1->AsBinaryOperation()->GetConstantRight() != nullptr &&
|
|
idx1->AsBinaryOperation()->GetLeastConstantLeft() == idx2) {
|
|
return CanBinaryOpAndIndexAlias(idx1->AsBinaryOperation(),
|
|
vector_length1,
|
|
idx2,
|
|
vector_length2);
|
|
}
|
|
|
|
// [i] and [i+CONST].
|
|
if (idx2->IsBinaryOperation() &&
|
|
idx2->AsBinaryOperation()->GetConstantRight() != nullptr &&
|
|
idx2->AsBinaryOperation()->GetLeastConstantLeft() == idx1) {
|
|
return CanBinaryOpAndIndexAlias(idx2->AsBinaryOperation(),
|
|
vector_length2,
|
|
idx1,
|
|
vector_length1);
|
|
}
|
|
|
|
// [i+CONST1] and [i+CONST2].
|
|
if (idx1->IsBinaryOperation() &&
|
|
idx1->AsBinaryOperation()->GetConstantRight() != nullptr &&
|
|
idx2->IsBinaryOperation() &&
|
|
idx2->AsBinaryOperation()->GetConstantRight() != nullptr) {
|
|
return CanBinaryOpsAlias(idx1->AsBinaryOperation(),
|
|
vector_length1,
|
|
idx2->AsBinaryOperation(),
|
|
vector_length2);
|
|
}
|
|
|
|
// By default, MAY alias.
|
|
return true;
|
|
}
|
|
|
|
bool LoadStoreAnalysis::Run() {
|
|
for (HBasicBlock* block : graph_->GetReversePostOrder()) {
|
|
heap_location_collector_.VisitBasicBlock(block);
|
|
}
|
|
|
|
if (heap_location_collector_.GetNumberOfHeapLocations() > kMaxNumberOfHeapLocations) {
|
|
// Bail out if there are too many heap locations to deal with.
|
|
heap_location_collector_.CleanUp();
|
|
return false;
|
|
}
|
|
if (!heap_location_collector_.HasHeapStores()) {
|
|
// Without heap stores, this pass would act mostly as GVN on heap accesses.
|
|
heap_location_collector_.CleanUp();
|
|
return false;
|
|
}
|
|
if (heap_location_collector_.HasVolatile() || heap_location_collector_.HasMonitorOps()) {
|
|
// Don't do load/store elimination if the method has volatile field accesses or
|
|
// monitor operations, for now.
|
|
// TODO: do it right.
|
|
heap_location_collector_.CleanUp();
|
|
return false;
|
|
}
|
|
|
|
heap_location_collector_.BuildAliasingMatrix();
|
|
heap_location_collector_.DumpReferenceStats(stats_);
|
|
return true;
|
|
}
|
|
|
|
} // namespace art
|