You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

340 lines
11 KiB

/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "code_generator.h"
#include "driver/compiler_options.h"
#include "loop_optimization.h"
#include "optimizing_unit_test.h"
namespace art {
/**
* Fixture class for the loop optimization tests. These unit tests focus
* constructing the loop hierarchy. Actual optimizations are tested
* through the checker tests.
*/
class LoopOptimizationTest : public OptimizingUnitTest {
protected:
void SetUp() override {
OptimizingUnitTest::SetUp();
graph_ = CreateGraph();
BuildGraph();
iva_ = new (GetAllocator()) HInductionVarAnalysis(graph_);
compiler_options_ = CommonCompilerTest::CreateCompilerOptions(kRuntimeISA, "default");
DCHECK(compiler_options_ != nullptr);
codegen_ = CodeGenerator::Create(graph_, *compiler_options_);
DCHECK(codegen_.get() != nullptr);
loop_opt_ = new (GetAllocator()) HLoopOptimization(
graph_, *codegen_.get(), iva_, /* stats= */ nullptr);
}
void TearDown() override {
codegen_.reset();
compiler_options_.reset();
graph_ = nullptr;
ResetPoolAndAllocator();
OptimizingUnitTest::TearDown();
}
virtual ~LoopOptimizationTest() {}
/** Constructs bare minimum graph. */
void BuildGraph() {
graph_->SetNumberOfVRegs(1);
entry_block_ = new (GetAllocator()) HBasicBlock(graph_);
return_block_ = new (GetAllocator()) HBasicBlock(graph_);
exit_block_ = new (GetAllocator()) HBasicBlock(graph_);
graph_->AddBlock(entry_block_);
graph_->AddBlock(return_block_);
graph_->AddBlock(exit_block_);
graph_->SetEntryBlock(entry_block_);
graph_->SetExitBlock(exit_block_);
parameter_ = new (GetAllocator()) HParameterValue(graph_->GetDexFile(),
dex::TypeIndex(0),
0,
DataType::Type::kInt32);
entry_block_->AddInstruction(parameter_);
return_block_->AddInstruction(new (GetAllocator()) HReturnVoid());
exit_block_->AddInstruction(new (GetAllocator()) HExit());
entry_block_->AddSuccessor(return_block_);
return_block_->AddSuccessor(exit_block_);
}
/** Adds a loop nest at given position before successor. */
HBasicBlock* AddLoop(HBasicBlock* position, HBasicBlock* successor) {
HBasicBlock* header = new (GetAllocator()) HBasicBlock(graph_);
HBasicBlock* body = new (GetAllocator()) HBasicBlock(graph_);
graph_->AddBlock(header);
graph_->AddBlock(body);
// Control flow.
position->ReplaceSuccessor(successor, header);
header->AddSuccessor(body);
header->AddSuccessor(successor);
header->AddInstruction(new (GetAllocator()) HIf(parameter_));
body->AddSuccessor(header);
body->AddInstruction(new (GetAllocator()) HGoto());
return header;
}
/** Performs analysis. */
void PerformAnalysis() {
graph_->BuildDominatorTree();
iva_->Run();
// Do not release the loop hierarchy.
ScopedArenaAllocator loop_allocator(GetArenaStack());
loop_opt_->loop_allocator_ = &loop_allocator;
loop_opt_->LocalRun();
}
/** Constructs string representation of computed loop hierarchy. */
std::string LoopStructure() {
return LoopStructureRecurse(loop_opt_->top_loop_);
}
// Helper method
std::string LoopStructureRecurse(HLoopOptimization::LoopNode* node) {
std::string s;
for ( ; node != nullptr; node = node->next) {
s.append("[");
s.append(LoopStructureRecurse(node->inner));
s.append("]");
}
return s;
}
// General building fields.
HGraph* graph_;
std::unique_ptr<CompilerOptions> compiler_options_;
std::unique_ptr<CodeGenerator> codegen_;
HInductionVarAnalysis* iva_;
HLoopOptimization* loop_opt_;
HBasicBlock* entry_block_;
HBasicBlock* return_block_;
HBasicBlock* exit_block_;
HInstruction* parameter_;
};
//
// The actual tests.
//
TEST_F(LoopOptimizationTest, NoLoops) {
PerformAnalysis();
EXPECT_EQ("", LoopStructure());
}
TEST_F(LoopOptimizationTest, SingleLoop) {
AddLoop(entry_block_, return_block_);
PerformAnalysis();
EXPECT_EQ("[]", LoopStructure());
}
TEST_F(LoopOptimizationTest, LoopNest10) {
HBasicBlock* b = entry_block_;
HBasicBlock* s = return_block_;
for (int i = 0; i < 10; i++) {
s = AddLoop(b, s);
b = s->GetSuccessors()[0];
}
PerformAnalysis();
EXPECT_EQ("[[[[[[[[[[]]]]]]]]]]", LoopStructure());
}
TEST_F(LoopOptimizationTest, LoopSequence10) {
HBasicBlock* b = entry_block_;
HBasicBlock* s = return_block_;
for (int i = 0; i < 10; i++) {
b = AddLoop(b, s);
s = b->GetSuccessors()[1];
}
PerformAnalysis();
EXPECT_EQ("[][][][][][][][][][]", LoopStructure());
}
TEST_F(LoopOptimizationTest, LoopSequenceOfNests) {
HBasicBlock* b = entry_block_;
HBasicBlock* s = return_block_;
for (int i = 0; i < 10; i++) {
b = AddLoop(b, s);
s = b->GetSuccessors()[1];
HBasicBlock* bi = b->GetSuccessors()[0];
HBasicBlock* si = b;
for (int j = 0; j < i; j++) {
si = AddLoop(bi, si);
bi = si->GetSuccessors()[0];
}
}
PerformAnalysis();
EXPECT_EQ("[]"
"[[]]"
"[[[]]]"
"[[[[]]]]"
"[[[[[]]]]]"
"[[[[[[]]]]]]"
"[[[[[[[]]]]]]]"
"[[[[[[[[]]]]]]]]"
"[[[[[[[[[]]]]]]]]]"
"[[[[[[[[[[]]]]]]]]]]",
LoopStructure());
}
TEST_F(LoopOptimizationTest, LoopNestWithSequence) {
HBasicBlock* b = entry_block_;
HBasicBlock* s = return_block_;
for (int i = 0; i < 10; i++) {
s = AddLoop(b, s);
b = s->GetSuccessors()[0];
}
b = s;
s = b->GetSuccessors()[1];
for (int i = 0; i < 9; i++) {
b = AddLoop(b, s);
s = b->GetSuccessors()[1];
}
PerformAnalysis();
EXPECT_EQ("[[[[[[[[[[][][][][][][][][][]]]]]]]]]]", LoopStructure());
}
// Check that SimplifyLoop() doesn't invalidate data flow when ordering loop headers'
// predecessors.
//
// This is a test for nodes.cc functionality - HGraph::SimplifyLoop.
TEST_F(LoopOptimizationTest, SimplifyLoopReoderPredecessors) {
// Can't use AddLoop as we want special order for blocks predecessors.
HBasicBlock* header = new (GetAllocator()) HBasicBlock(graph_);
HBasicBlock* body = new (GetAllocator()) HBasicBlock(graph_);
graph_->AddBlock(header);
graph_->AddBlock(body);
// Control flow: make a loop back edge first in the list of predecessors.
entry_block_->RemoveSuccessor(return_block_);
body->AddSuccessor(header);
entry_block_->AddSuccessor(header);
header->AddSuccessor(body);
header->AddSuccessor(return_block_);
DCHECK(header->GetSuccessors()[1] == return_block_);
// Data flow.
header->AddInstruction(new (GetAllocator()) HIf(parameter_));
body->AddInstruction(new (GetAllocator()) HGoto());
HPhi* phi = new (GetAllocator()) HPhi(GetAllocator(), 0, 0, DataType::Type::kInt32);
HInstruction* add = new (GetAllocator()) HAdd(DataType::Type::kInt32, phi, parameter_);
header->AddPhi(phi);
body->AddInstruction(add);
phi->AddInput(add);
phi->AddInput(parameter_);
graph_->ClearLoopInformation();
graph_->ClearDominanceInformation();
graph_->BuildDominatorTree();
// BuildDominatorTree inserts a block beetween loop header and entry block.
EXPECT_EQ(header->GetPredecessors()[0]->GetSinglePredecessor(), entry_block_);
// Check that after optimizations in BuildDominatorTree()/SimplifyCFG() phi inputs
// are still mapped correctly to the block predecessors.
for (size_t i = 0, e = phi->InputCount(); i < e; i++) {
HInstruction* input = phi->InputAt(i);
EXPECT_TRUE(input->GetBlock()->Dominates(header->GetPredecessors()[i]));
}
}
// Test that SimplifyLoop() processes the multiple-preheaders loops correctly.
//
// This is a test for nodes.cc functionality - HGraph::SimplifyLoop.
TEST_F(LoopOptimizationTest, SimplifyLoopSinglePreheader) {
HBasicBlock* header = AddLoop(entry_block_, return_block_);
header->InsertInstructionBefore(
new (GetAllocator()) HSuspendCheck(), header->GetLastInstruction());
// Insert an if construct before the loop so it will have two preheaders.
HBasicBlock* if_block = new (GetAllocator()) HBasicBlock(graph_);
HBasicBlock* preheader0 = new (GetAllocator()) HBasicBlock(graph_);
HBasicBlock* preheader1 = new (GetAllocator()) HBasicBlock(graph_);
graph_->AddBlock(if_block);
graph_->AddBlock(preheader0);
graph_->AddBlock(preheader1);
// Fix successors/predecessors.
entry_block_->ReplaceSuccessor(header, if_block);
if_block->AddSuccessor(preheader0);
if_block->AddSuccessor(preheader1);
preheader0->AddSuccessor(header);
preheader1->AddSuccessor(header);
if_block->AddInstruction(new (GetAllocator()) HIf(parameter_));
preheader0->AddInstruction(new (GetAllocator()) HGoto());
preheader1->AddInstruction(new (GetAllocator()) HGoto());
HBasicBlock* body = header->GetSuccessors()[0];
DCHECK(body != return_block_);
// Add some data flow.
HIntConstant* const_0 = graph_->GetIntConstant(0);
HIntConstant* const_1 = graph_->GetIntConstant(1);
HIntConstant* const_2 = graph_->GetIntConstant(2);
HAdd* preheader0_add = new (GetAllocator()) HAdd(DataType::Type::kInt32, parameter_, const_0);
preheader0->AddInstruction(preheader0_add);
HAdd* preheader1_add = new (GetAllocator()) HAdd(DataType::Type::kInt32, parameter_, const_1);
preheader1->AddInstruction(preheader1_add);
HPhi* header_phi = new (GetAllocator()) HPhi(GetAllocator(), 0, 0, DataType::Type::kInt32);
header->AddPhi(header_phi);
HAdd* body_add = new (GetAllocator()) HAdd(DataType::Type::kInt32, parameter_, const_2);
body->AddInstruction(body_add);
DCHECK(header->GetPredecessors()[0] == body);
DCHECK(header->GetPredecessors()[1] == preheader0);
DCHECK(header->GetPredecessors()[2] == preheader1);
header_phi->AddInput(body_add);
header_phi->AddInput(preheader0_add);
header_phi->AddInput(preheader1_add);
graph_->ClearLoopInformation();
graph_->ClearDominanceInformation();
graph_->BuildDominatorTree();
EXPECT_EQ(header->GetPredecessors().size(), 2u);
EXPECT_EQ(header->GetPredecessors()[1], body);
HBasicBlock* new_preheader = header->GetLoopInformation()->GetPreHeader();
EXPECT_EQ(preheader0->GetSingleSuccessor(), new_preheader);
EXPECT_EQ(preheader1->GetSingleSuccessor(), new_preheader);
EXPECT_EQ(new_preheader->GetPhis().CountSize(), 1u);
HPhi* new_preheader_phi = new_preheader->GetFirstPhi()->AsPhi();
EXPECT_EQ(new_preheader_phi->InputCount(), 2u);
EXPECT_EQ(new_preheader_phi->InputAt(0), preheader0_add);
EXPECT_EQ(new_preheader_phi->InputAt(1), preheader1_add);
EXPECT_EQ(header_phi->InputCount(), 2u);
EXPECT_EQ(header_phi->InputAt(0), new_preheader_phi);
EXPECT_EQ(header_phi->InputAt(1), body_add);
}
} // namespace art