You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1465 lines
58 KiB

/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "optimizing_compiler.h"
#include <fstream>
#include <memory>
#include <sstream>
#include <stdint.h>
#include "art_method-inl.h"
#include "base/arena_allocator.h"
#include "base/arena_containers.h"
#include "base/dumpable.h"
#include "base/logging.h"
#include "base/macros.h"
#include "base/mutex.h"
#include "base/scoped_arena_allocator.h"
#include "base/timing_logger.h"
#include "builder.h"
#include "code_generator.h"
#include "compiled_method.h"
#include "compiler.h"
#include "debug/elf_debug_writer.h"
#include "debug/method_debug_info.h"
#include "dex/dex_file_types.h"
#include "dex/verification_results.h"
#include "dex/verified_method.h"
#include "driver/compiled_method_storage.h"
#include "driver/compiler_options.h"
#include "driver/dex_compilation_unit.h"
#include "graph_checker.h"
#include "graph_visualizer.h"
#include "inliner.h"
#include "jit/debugger_interface.h"
#include "jit/jit.h"
#include "jit/jit_code_cache.h"
#include "jit/jit_logger.h"
#include "jni/quick/jni_compiler.h"
#include "linker/linker_patch.h"
#include "nodes.h"
#include "oat_quick_method_header.h"
#include "prepare_for_register_allocation.h"
#include "reference_type_propagation.h"
#include "register_allocator_linear_scan.h"
#include "select_generator.h"
#include "ssa_builder.h"
#include "ssa_liveness_analysis.h"
#include "ssa_phi_elimination.h"
#include "stack_map_stream.h"
#include "utils/assembler.h"
#include "verifier/verifier_compiler_binding.h"
namespace art {
static constexpr size_t kArenaAllocatorMemoryReportThreshold = 8 * MB;
static constexpr const char* kPassNameSeparator = "$";
/**
* Used by the code generator, to allocate the code in a vector.
*/
class CodeVectorAllocator final : public CodeAllocator {
public:
explicit CodeVectorAllocator(ArenaAllocator* allocator)
: memory_(allocator->Adapter(kArenaAllocCodeBuffer)) {}
uint8_t* Allocate(size_t size) override {
memory_.resize(size);
return &memory_[0];
}
ArrayRef<const uint8_t> GetMemory() const override { return ArrayRef<const uint8_t>(memory_); }
uint8_t* GetData() { return memory_.data(); }
private:
ArenaVector<uint8_t> memory_;
DISALLOW_COPY_AND_ASSIGN(CodeVectorAllocator);
};
/**
* Filter to apply to the visualizer. Methods whose name contain that filter will
* be dumped.
*/
static constexpr const char kStringFilter[] = "";
class PassScope;
class PassObserver : public ValueObject {
public:
PassObserver(HGraph* graph,
CodeGenerator* codegen,
std::ostream* visualizer_output,
const CompilerOptions& compiler_options,
Mutex& dump_mutex)
: graph_(graph),
last_seen_graph_size_(0),
cached_method_name_(),
timing_logger_enabled_(compiler_options.GetDumpPassTimings()),
timing_logger_(timing_logger_enabled_ ? GetMethodName() : "", true, true),
disasm_info_(graph->GetAllocator()),
visualizer_oss_(),
visualizer_output_(visualizer_output),
visualizer_enabled_(!compiler_options.GetDumpCfgFileName().empty()),
visualizer_(&visualizer_oss_, graph, codegen),
codegen_(codegen),
visualizer_dump_mutex_(dump_mutex),
graph_in_bad_state_(false) {
if (timing_logger_enabled_ || visualizer_enabled_) {
if (!IsVerboseMethod(compiler_options, GetMethodName())) {
timing_logger_enabled_ = visualizer_enabled_ = false;
}
if (visualizer_enabled_) {
visualizer_.PrintHeader(GetMethodName());
codegen->SetDisassemblyInformation(&disasm_info_);
}
}
}
~PassObserver() {
if (timing_logger_enabled_) {
LOG(INFO) << "TIMINGS " << GetMethodName();
LOG(INFO) << Dumpable<TimingLogger>(timing_logger_);
}
if (visualizer_enabled_) {
FlushVisualizer();
}
DCHECK(visualizer_oss_.str().empty());
}
void DumpDisassembly() {
if (visualizer_enabled_) {
visualizer_.DumpGraphWithDisassembly();
}
}
void SetGraphInBadState() { graph_in_bad_state_ = true; }
const char* GetMethodName() {
// PrettyMethod() is expensive, so we delay calling it until we actually have to.
if (cached_method_name_.empty()) {
cached_method_name_ = graph_->GetDexFile().PrettyMethod(graph_->GetMethodIdx());
}
return cached_method_name_.c_str();
}
private:
void StartPass(const char* pass_name) {
VLOG(compiler) << "Starting pass: " << pass_name;
// Dump graph first, then start timer.
if (visualizer_enabled_) {
visualizer_.DumpGraph(pass_name, /* is_after_pass= */ false, graph_in_bad_state_);
}
if (timing_logger_enabled_) {
timing_logger_.StartTiming(pass_name);
}
}
void FlushVisualizer() REQUIRES(!visualizer_dump_mutex_) {
MutexLock mu(Thread::Current(), visualizer_dump_mutex_);
*visualizer_output_ << visualizer_oss_.str();
visualizer_output_->flush();
visualizer_oss_.str("");
visualizer_oss_.clear();
}
void EndPass(const char* pass_name, bool pass_change) {
// Pause timer first, then dump graph.
if (timing_logger_enabled_) {
timing_logger_.EndTiming();
}
if (visualizer_enabled_) {
visualizer_.DumpGraph(pass_name, /* is_after_pass= */ true, graph_in_bad_state_);
}
// Validate the HGraph if running in debug mode.
if (kIsDebugBuild) {
if (!graph_in_bad_state_) {
GraphChecker checker(graph_, codegen_);
last_seen_graph_size_ = checker.Run(pass_change, last_seen_graph_size_);
if (!checker.IsValid()) {
LOG(FATAL_WITHOUT_ABORT) << "Error after " << pass_name << "(" << graph_->PrettyMethod()
<< "): " << *graph_;
LOG(FATAL) << "(" << pass_name << "): " << Dumpable<GraphChecker>(checker);
}
}
}
}
static bool IsVerboseMethod(const CompilerOptions& compiler_options, const char* method_name) {
// Test an exact match to --verbose-methods. If verbose-methods is set, this overrides an
// empty kStringFilter matching all methods.
if (compiler_options.HasVerboseMethods()) {
return compiler_options.IsVerboseMethod(method_name);
}
// Test the kStringFilter sub-string. constexpr helper variable to silence unreachable-code
// warning when the string is empty.
constexpr bool kStringFilterEmpty = arraysize(kStringFilter) <= 1;
if (kStringFilterEmpty || strstr(method_name, kStringFilter) != nullptr) {
return true;
}
return false;
}
HGraph* const graph_;
size_t last_seen_graph_size_;
std::string cached_method_name_;
bool timing_logger_enabled_;
TimingLogger timing_logger_;
DisassemblyInformation disasm_info_;
std::ostringstream visualizer_oss_;
std::ostream* visualizer_output_;
bool visualizer_enabled_;
HGraphVisualizer visualizer_;
CodeGenerator* codegen_;
Mutex& visualizer_dump_mutex_;
// Flag to be set by the compiler if the pass failed and the graph is not
// expected to validate.
bool graph_in_bad_state_;
friend PassScope;
DISALLOW_COPY_AND_ASSIGN(PassObserver);
};
class PassScope : public ValueObject {
public:
PassScope(const char *pass_name, PassObserver* pass_observer)
: pass_name_(pass_name),
pass_change_(true), // assume change
pass_observer_(pass_observer) {
pass_observer_->StartPass(pass_name_);
}
void SetPassNotChanged() {
pass_change_ = false;
}
~PassScope() {
pass_observer_->EndPass(pass_name_, pass_change_);
}
private:
const char* const pass_name_;
bool pass_change_;
PassObserver* const pass_observer_;
};
class OptimizingCompiler final : public Compiler {
public:
explicit OptimizingCompiler(const CompilerOptions& compiler_options,
CompiledMethodStorage* storage);
~OptimizingCompiler() override;
bool CanCompileMethod(uint32_t method_idx, const DexFile& dex_file) const override;
CompiledMethod* Compile(const dex::CodeItem* code_item,
uint32_t access_flags,
InvokeType invoke_type,
uint16_t class_def_idx,
uint32_t method_idx,
Handle<mirror::ClassLoader> class_loader,
const DexFile& dex_file,
Handle<mirror::DexCache> dex_cache) const override;
CompiledMethod* JniCompile(uint32_t access_flags,
uint32_t method_idx,
const DexFile& dex_file,
Handle<mirror::DexCache> dex_cache) const override;
uintptr_t GetEntryPointOf(ArtMethod* method) const override
REQUIRES_SHARED(Locks::mutator_lock_) {
return reinterpret_cast<uintptr_t>(method->GetEntryPointFromQuickCompiledCodePtrSize(
InstructionSetPointerSize(GetCompilerOptions().GetInstructionSet())));
}
bool JitCompile(Thread* self,
jit::JitCodeCache* code_cache,
jit::JitMemoryRegion* region,
ArtMethod* method,
CompilationKind compilation_kind,
jit::JitLogger* jit_logger)
override
REQUIRES_SHARED(Locks::mutator_lock_);
private:
bool RunOptimizations(HGraph* graph,
CodeGenerator* codegen,
const DexCompilationUnit& dex_compilation_unit,
PassObserver* pass_observer,
const OptimizationDef definitions[],
size_t length) const {
// Convert definitions to optimization passes.
ArenaVector<HOptimization*> optimizations = ConstructOptimizations(
definitions,
length,
graph->GetAllocator(),
graph,
compilation_stats_.get(),
codegen,
dex_compilation_unit);
DCHECK_EQ(length, optimizations.size());
// Run the optimization passes one by one. Any "depends_on" pass refers back to
// the most recent occurrence of that pass, skipped or executed.
std::bitset<static_cast<size_t>(OptimizationPass::kLast) + 1u> pass_changes;
pass_changes[static_cast<size_t>(OptimizationPass::kNone)] = true;
bool change = false;
for (size_t i = 0; i < length; ++i) {
if (pass_changes[static_cast<size_t>(definitions[i].depends_on)]) {
// Execute the pass and record whether it changed anything.
PassScope scope(optimizations[i]->GetPassName(), pass_observer);
bool pass_change = optimizations[i]->Run();
pass_changes[static_cast<size_t>(definitions[i].pass)] = pass_change;
if (pass_change) {
change = true;
} else {
scope.SetPassNotChanged();
}
} else {
// Skip the pass and record that nothing changed.
pass_changes[static_cast<size_t>(definitions[i].pass)] = false;
}
}
return change;
}
template <size_t length> bool RunOptimizations(
HGraph* graph,
CodeGenerator* codegen,
const DexCompilationUnit& dex_compilation_unit,
PassObserver* pass_observer,
const OptimizationDef (&definitions)[length]) const {
return RunOptimizations(
graph, codegen, dex_compilation_unit, pass_observer, definitions, length);
}
void RunOptimizations(HGraph* graph,
CodeGenerator* codegen,
const DexCompilationUnit& dex_compilation_unit,
PassObserver* pass_observer) const;
private:
// Create a 'CompiledMethod' for an optimized graph.
CompiledMethod* Emit(ArenaAllocator* allocator,
CodeVectorAllocator* code_allocator,
CodeGenerator* codegen,
const dex::CodeItem* item) const;
// Try compiling a method and return the code generator used for
// compiling it.
// This method:
// 1) Builds the graph. Returns null if it failed to build it.
// 2) Transforms the graph to SSA. Returns null if it failed.
// 3) Runs optimizations on the graph, including register allocator.
// 4) Generates code with the `code_allocator` provided.
CodeGenerator* TryCompile(ArenaAllocator* allocator,
ArenaStack* arena_stack,
CodeVectorAllocator* code_allocator,
const DexCompilationUnit& dex_compilation_unit,
ArtMethod* method,
CompilationKind compilation_kind,
VariableSizedHandleScope* handles) const;
CodeGenerator* TryCompileIntrinsic(ArenaAllocator* allocator,
ArenaStack* arena_stack,
CodeVectorAllocator* code_allocator,
const DexCompilationUnit& dex_compilation_unit,
ArtMethod* method,
VariableSizedHandleScope* handles) const;
bool RunArchOptimizations(HGraph* graph,
CodeGenerator* codegen,
const DexCompilationUnit& dex_compilation_unit,
PassObserver* pass_observer) const;
bool RunBaselineOptimizations(HGraph* graph,
CodeGenerator* codegen,
const DexCompilationUnit& dex_compilation_unit,
PassObserver* pass_observer) const;
std::vector<uint8_t> GenerateJitDebugInfo(const debug::MethodDebugInfo& method_debug_info);
// This must be called before any other function that dumps data to the cfg
void DumpInstructionSetFeaturesToCfg() const;
std::unique_ptr<OptimizingCompilerStats> compilation_stats_;
std::unique_ptr<std::ostream> visualizer_output_;
mutable Mutex dump_mutex_; // To synchronize visualizer writing.
DISALLOW_COPY_AND_ASSIGN(OptimizingCompiler);
};
static const int kMaximumCompilationTimeBeforeWarning = 100; /* ms */
OptimizingCompiler::OptimizingCompiler(const CompilerOptions& compiler_options,
CompiledMethodStorage* storage)
: Compiler(compiler_options, storage, kMaximumCompilationTimeBeforeWarning),
dump_mutex_("Visualizer dump lock") {
// Enable C1visualizer output.
const std::string& cfg_file_name = compiler_options.GetDumpCfgFileName();
if (!cfg_file_name.empty()) {
std::ios_base::openmode cfg_file_mode =
compiler_options.GetDumpCfgAppend() ? std::ofstream::app : std::ofstream::out;
visualizer_output_.reset(new std::ofstream(cfg_file_name, cfg_file_mode));
DumpInstructionSetFeaturesToCfg();
}
if (compiler_options.GetDumpStats()) {
compilation_stats_.reset(new OptimizingCompilerStats());
}
}
OptimizingCompiler::~OptimizingCompiler() {
if (compilation_stats_.get() != nullptr) {
compilation_stats_->Log();
}
}
void OptimizingCompiler::DumpInstructionSetFeaturesToCfg() const {
const CompilerOptions& compiler_options = GetCompilerOptions();
const InstructionSetFeatures* features = compiler_options.GetInstructionSetFeatures();
std::string isa_string =
std::string("isa:") + GetInstructionSetString(features->GetInstructionSet());
std::string features_string = "isa_features:" + features->GetFeatureString();
// It is assumed that visualizer_output_ is empty when calling this function, hence the fake
// compilation block containing the ISA features will be printed at the beginning of the .cfg
// file.
*visualizer_output_
<< HGraphVisualizer::InsertMetaDataAsCompilationBlock(isa_string + ' ' + features_string);
}
bool OptimizingCompiler::CanCompileMethod(uint32_t method_idx ATTRIBUTE_UNUSED,
const DexFile& dex_file ATTRIBUTE_UNUSED) const {
return true;
}
static bool IsInstructionSetSupported(InstructionSet instruction_set) {
return instruction_set == InstructionSet::kArm
|| instruction_set == InstructionSet::kArm64
|| instruction_set == InstructionSet::kThumb2
|| instruction_set == InstructionSet::kX86
|| instruction_set == InstructionSet::kX86_64;
}
bool OptimizingCompiler::RunBaselineOptimizations(HGraph* graph,
CodeGenerator* codegen,
const DexCompilationUnit& dex_compilation_unit,
PassObserver* pass_observer) const {
switch (codegen->GetCompilerOptions().GetInstructionSet()) {
#if defined(ART_ENABLE_CODEGEN_arm)
case InstructionSet::kThumb2:
case InstructionSet::kArm: {
OptimizationDef arm_optimizations[] = {
OptDef(OptimizationPass::kCriticalNativeAbiFixupArm),
};
return RunOptimizations(graph,
codegen,
dex_compilation_unit,
pass_observer,
arm_optimizations);
}
#endif
#ifdef ART_ENABLE_CODEGEN_x86
case InstructionSet::kX86: {
OptimizationDef x86_optimizations[] = {
OptDef(OptimizationPass::kPcRelativeFixupsX86),
};
return RunOptimizations(graph,
codegen,
dex_compilation_unit,
pass_observer,
x86_optimizations);
}
#endif
default:
UNUSED(graph);
UNUSED(codegen);
UNUSED(dex_compilation_unit);
UNUSED(pass_observer);
return false;
}
}
bool OptimizingCompiler::RunArchOptimizations(HGraph* graph,
CodeGenerator* codegen,
const DexCompilationUnit& dex_compilation_unit,
PassObserver* pass_observer) const {
switch (codegen->GetCompilerOptions().GetInstructionSet()) {
#if defined(ART_ENABLE_CODEGEN_arm)
case InstructionSet::kThumb2:
case InstructionSet::kArm: {
OptimizationDef arm_optimizations[] = {
OptDef(OptimizationPass::kInstructionSimplifierArm),
OptDef(OptimizationPass::kSideEffectsAnalysis),
OptDef(OptimizationPass::kGlobalValueNumbering, "GVN$after_arch"),
OptDef(OptimizationPass::kCriticalNativeAbiFixupArm),
OptDef(OptimizationPass::kScheduling)
};
return RunOptimizations(graph,
codegen,
dex_compilation_unit,
pass_observer,
arm_optimizations);
}
#endif
#ifdef ART_ENABLE_CODEGEN_arm64
case InstructionSet::kArm64: {
OptimizationDef arm64_optimizations[] = {
OptDef(OptimizationPass::kInstructionSimplifierArm64),
OptDef(OptimizationPass::kSideEffectsAnalysis),
OptDef(OptimizationPass::kGlobalValueNumbering, "GVN$after_arch"),
OptDef(OptimizationPass::kScheduling)
};
return RunOptimizations(graph,
codegen,
dex_compilation_unit,
pass_observer,
arm64_optimizations);
}
#endif
#ifdef ART_ENABLE_CODEGEN_x86
case InstructionSet::kX86: {
OptimizationDef x86_optimizations[] = {
OptDef(OptimizationPass::kInstructionSimplifierX86),
OptDef(OptimizationPass::kSideEffectsAnalysis),
OptDef(OptimizationPass::kGlobalValueNumbering, "GVN$after_arch"),
OptDef(OptimizationPass::kPcRelativeFixupsX86),
OptDef(OptimizationPass::kX86MemoryOperandGeneration)
};
return RunOptimizations(graph,
codegen,
dex_compilation_unit,
pass_observer,
x86_optimizations);
}
#endif
#ifdef ART_ENABLE_CODEGEN_x86_64
case InstructionSet::kX86_64: {
OptimizationDef x86_64_optimizations[] = {
OptDef(OptimizationPass::kInstructionSimplifierX86_64),
OptDef(OptimizationPass::kSideEffectsAnalysis),
OptDef(OptimizationPass::kGlobalValueNumbering, "GVN$after_arch"),
OptDef(OptimizationPass::kX86MemoryOperandGeneration)
};
return RunOptimizations(graph,
codegen,
dex_compilation_unit,
pass_observer,
x86_64_optimizations);
}
#endif
default:
return false;
}
}
NO_INLINE // Avoid increasing caller's frame size by large stack-allocated objects.
static void AllocateRegisters(HGraph* graph,
CodeGenerator* codegen,
PassObserver* pass_observer,
RegisterAllocator::Strategy strategy,
OptimizingCompilerStats* stats) {
{
PassScope scope(PrepareForRegisterAllocation::kPrepareForRegisterAllocationPassName,
pass_observer);
PrepareForRegisterAllocation(graph, codegen->GetCompilerOptions(), stats).Run();
}
// Use local allocator shared by SSA liveness analysis and register allocator.
// (Register allocator creates new objects in the liveness data.)
ScopedArenaAllocator local_allocator(graph->GetArenaStack());
SsaLivenessAnalysis liveness(graph, codegen, &local_allocator);
{
PassScope scope(SsaLivenessAnalysis::kLivenessPassName, pass_observer);
liveness.Analyze();
}
{
PassScope scope(RegisterAllocator::kRegisterAllocatorPassName, pass_observer);
std::unique_ptr<RegisterAllocator> register_allocator =
RegisterAllocator::Create(&local_allocator, codegen, liveness, strategy);
register_allocator->AllocateRegisters();
}
}
// Strip pass name suffix to get optimization name.
static std::string ConvertPassNameToOptimizationName(const std::string& pass_name) {
size_t pos = pass_name.find(kPassNameSeparator);
return pos == std::string::npos ? pass_name : pass_name.substr(0, pos);
}
void OptimizingCompiler::RunOptimizations(HGraph* graph,
CodeGenerator* codegen,
const DexCompilationUnit& dex_compilation_unit,
PassObserver* pass_observer) const {
const std::vector<std::string>* pass_names = GetCompilerOptions().GetPassesToRun();
if (pass_names != nullptr) {
// If passes were defined on command-line, build the optimization
// passes and run these instead of the built-in optimizations.
// TODO: a way to define depends_on via command-line?
const size_t length = pass_names->size();
std::vector<OptimizationDef> optimizations;
for (const std::string& pass_name : *pass_names) {
std::string opt_name = ConvertPassNameToOptimizationName(pass_name);
optimizations.push_back(OptDef(OptimizationPassByName(opt_name), pass_name.c_str()));
}
RunOptimizations(graph,
codegen,
dex_compilation_unit,
pass_observer,
optimizations.data(),
length);
return;
}
OptimizationDef optimizations[] = {
// Initial optimizations.
OptDef(OptimizationPass::kConstantFolding),
OptDef(OptimizationPass::kInstructionSimplifier),
OptDef(OptimizationPass::kDeadCodeElimination,
"dead_code_elimination$initial"),
// Inlining.
OptDef(OptimizationPass::kInliner),
// Simplification (only if inlining occurred).
OptDef(OptimizationPass::kConstantFolding,
"constant_folding$after_inlining",
OptimizationPass::kInliner),
OptDef(OptimizationPass::kInstructionSimplifier,
"instruction_simplifier$after_inlining",
OptimizationPass::kInliner),
OptDef(OptimizationPass::kDeadCodeElimination,
"dead_code_elimination$after_inlining",
OptimizationPass::kInliner),
// GVN.
OptDef(OptimizationPass::kSideEffectsAnalysis,
"side_effects$before_gvn"),
OptDef(OptimizationPass::kGlobalValueNumbering),
// Simplification (TODO: only if GVN occurred).
OptDef(OptimizationPass::kSelectGenerator),
OptDef(OptimizationPass::kConstantFolding,
"constant_folding$after_gvn"),
OptDef(OptimizationPass::kInstructionSimplifier,
"instruction_simplifier$after_gvn"),
OptDef(OptimizationPass::kDeadCodeElimination,
"dead_code_elimination$after_gvn"),
// High-level optimizations.
OptDef(OptimizationPass::kSideEffectsAnalysis,
"side_effects$before_licm"),
OptDef(OptimizationPass::kInvariantCodeMotion),
OptDef(OptimizationPass::kInductionVarAnalysis),
OptDef(OptimizationPass::kBoundsCheckElimination),
OptDef(OptimizationPass::kLoopOptimization),
// Simplification.
OptDef(OptimizationPass::kConstantFolding,
"constant_folding$after_bce"),
OptDef(OptimizationPass::kAggressiveInstructionSimplifier,
"instruction_simplifier$after_bce"),
// Other high-level optimizations.
OptDef(OptimizationPass::kLoadStoreElimination),
OptDef(OptimizationPass::kCHAGuardOptimization),
OptDef(OptimizationPass::kDeadCodeElimination,
"dead_code_elimination$final"),
OptDef(OptimizationPass::kCodeSinking),
// The codegen has a few assumptions that only the instruction simplifier
// can satisfy. For example, the code generator does not expect to see a
// HTypeConversion from a type to the same type.
OptDef(OptimizationPass::kAggressiveInstructionSimplifier,
"instruction_simplifier$before_codegen"),
// Eliminate constructor fences after code sinking to avoid
// complicated sinking logic to split a fence with many inputs.
OptDef(OptimizationPass::kConstructorFenceRedundancyElimination)
};
RunOptimizations(graph,
codegen,
dex_compilation_unit,
pass_observer,
optimizations);
RunArchOptimizations(graph, codegen, dex_compilation_unit, pass_observer);
}
static ArenaVector<linker::LinkerPatch> EmitAndSortLinkerPatches(CodeGenerator* codegen) {
ArenaVector<linker::LinkerPatch> linker_patches(codegen->GetGraph()->GetAllocator()->Adapter());
codegen->EmitLinkerPatches(&linker_patches);
// Sort patches by literal offset. Required for .oat_patches encoding.
std::sort(linker_patches.begin(), linker_patches.end(),
[](const linker::LinkerPatch& lhs, const linker::LinkerPatch& rhs) {
return lhs.LiteralOffset() < rhs.LiteralOffset();
});
return linker_patches;
}
CompiledMethod* OptimizingCompiler::Emit(ArenaAllocator* allocator,
CodeVectorAllocator* code_allocator,
CodeGenerator* codegen,
const dex::CodeItem* code_item_for_osr_check) const {
ArenaVector<linker::LinkerPatch> linker_patches = EmitAndSortLinkerPatches(codegen);
ScopedArenaVector<uint8_t> stack_map = codegen->BuildStackMaps(code_item_for_osr_check);
CompiledMethodStorage* storage = GetCompiledMethodStorage();
CompiledMethod* compiled_method = CompiledMethod::SwapAllocCompiledMethod(
storage,
codegen->GetInstructionSet(),
code_allocator->GetMemory(),
ArrayRef<const uint8_t>(stack_map),
ArrayRef<const uint8_t>(*codegen->GetAssembler()->cfi().data()),
ArrayRef<const linker::LinkerPatch>(linker_patches));
for (const linker::LinkerPatch& patch : linker_patches) {
if (codegen->NeedsThunkCode(patch) && storage->GetThunkCode(patch).empty()) {
ArenaVector<uint8_t> code(allocator->Adapter());
std::string debug_name;
codegen->EmitThunkCode(patch, &code, &debug_name);
storage->SetThunkCode(patch, ArrayRef<const uint8_t>(code), debug_name);
}
}
return compiled_method;
}
CodeGenerator* OptimizingCompiler::TryCompile(ArenaAllocator* allocator,
ArenaStack* arena_stack,
CodeVectorAllocator* code_allocator,
const DexCompilationUnit& dex_compilation_unit,
ArtMethod* method,
CompilationKind compilation_kind,
VariableSizedHandleScope* handles) const {
MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kAttemptBytecodeCompilation);
const CompilerOptions& compiler_options = GetCompilerOptions();
InstructionSet instruction_set = compiler_options.GetInstructionSet();
const DexFile& dex_file = *dex_compilation_unit.GetDexFile();
uint32_t method_idx = dex_compilation_unit.GetDexMethodIndex();
const dex::CodeItem* code_item = dex_compilation_unit.GetCodeItem();
// Always use the Thumb-2 assembler: some runtime functionality
// (like implicit stack overflow checks) assume Thumb-2.
DCHECK_NE(instruction_set, InstructionSet::kArm);
// Do not attempt to compile on architectures we do not support.
if (!IsInstructionSetSupported(instruction_set)) {
MaybeRecordStat(compilation_stats_.get(),
MethodCompilationStat::kNotCompiledUnsupportedIsa);
return nullptr;
}
if (Compiler::IsPathologicalCase(*code_item, method_idx, dex_file)) {
MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kNotCompiledPathological);
return nullptr;
}
// Implementation of the space filter: do not compile a code item whose size in
// code units is bigger than 128.
static constexpr size_t kSpaceFilterOptimizingThreshold = 128;
if ((compiler_options.GetCompilerFilter() == CompilerFilter::kSpace)
&& (CodeItemInstructionAccessor(dex_file, code_item).InsnsSizeInCodeUnits() >
kSpaceFilterOptimizingThreshold)) {
MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kNotCompiledSpaceFilter);
return nullptr;
}
CodeItemDebugInfoAccessor code_item_accessor(dex_file, code_item, method_idx);
bool dead_reference_safe;
// For AOT compilation, we may not get a method, for example if its class is erroneous,
// possibly due to an unavailable superclass. JIT should always have a method.
DCHECK(Runtime::Current()->IsAotCompiler() || method != nullptr);
if (method != nullptr) {
const dex::ClassDef* containing_class;
{
ScopedObjectAccess soa(Thread::Current());
containing_class = &method->GetClassDef();
}
// MethodContainsRSensitiveAccess is currently slow, but HasDeadReferenceSafeAnnotation()
// is currently rarely true.
dead_reference_safe =
annotations::HasDeadReferenceSafeAnnotation(dex_file, *containing_class)
&& !annotations::MethodContainsRSensitiveAccess(dex_file, *containing_class, method_idx);
} else {
// If we could not resolve the class, conservatively assume it's dead-reference unsafe.
dead_reference_safe = false;
}
HGraph* graph = new (allocator) HGraph(
allocator,
arena_stack,
handles,
dex_file,
method_idx,
compiler_options.GetInstructionSet(),
kInvalidInvokeType,
dead_reference_safe,
compiler_options.GetDebuggable(),
compilation_kind);
if (method != nullptr) {
graph->SetArtMethod(method);
}
std::unique_ptr<CodeGenerator> codegen(
CodeGenerator::Create(graph,
compiler_options,
compilation_stats_.get()));
if (codegen.get() == nullptr) {
MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kNotCompiledNoCodegen);
return nullptr;
}
codegen->GetAssembler()->cfi().SetEnabled(compiler_options.GenerateAnyDebugInfo());
PassObserver pass_observer(graph,
codegen.get(),
visualizer_output_.get(),
compiler_options,
dump_mutex_);
{
VLOG(compiler) << "Building " << pass_observer.GetMethodName();
PassScope scope(HGraphBuilder::kBuilderPassName, &pass_observer);
HGraphBuilder builder(graph,
code_item_accessor,
&dex_compilation_unit,
&dex_compilation_unit,
codegen.get(),
compilation_stats_.get());
GraphAnalysisResult result = builder.BuildGraph();
if (result != kAnalysisSuccess) {
switch (result) {
case kAnalysisSkipped: {
MaybeRecordStat(compilation_stats_.get(),
MethodCompilationStat::kNotCompiledSkipped);
break;
}
case kAnalysisInvalidBytecode: {
MaybeRecordStat(compilation_stats_.get(),
MethodCompilationStat::kNotCompiledInvalidBytecode);
break;
}
case kAnalysisFailThrowCatchLoop: {
MaybeRecordStat(compilation_stats_.get(),
MethodCompilationStat::kNotCompiledThrowCatchLoop);
break;
}
case kAnalysisFailAmbiguousArrayOp: {
MaybeRecordStat(compilation_stats_.get(),
MethodCompilationStat::kNotCompiledAmbiguousArrayOp);
break;
}
case kAnalysisFailIrreducibleLoopAndStringInit: {
MaybeRecordStat(compilation_stats_.get(),
MethodCompilationStat::kNotCompiledIrreducibleLoopAndStringInit);
break;
}
case kAnalysisFailPhiEquivalentInOsr: {
MaybeRecordStat(compilation_stats_.get(),
MethodCompilationStat::kNotCompiledPhiEquivalentInOsr);
break;
}
case kAnalysisSuccess:
UNREACHABLE();
}
pass_observer.SetGraphInBadState();
return nullptr;
}
}
if (compilation_kind == CompilationKind::kBaseline) {
RunBaselineOptimizations(graph, codegen.get(), dex_compilation_unit, &pass_observer);
} else {
RunOptimizations(graph, codegen.get(), dex_compilation_unit, &pass_observer);
}
RegisterAllocator::Strategy regalloc_strategy =
compiler_options.GetRegisterAllocationStrategy();
AllocateRegisters(graph,
codegen.get(),
&pass_observer,
regalloc_strategy,
compilation_stats_.get());
codegen->Compile(code_allocator);
pass_observer.DumpDisassembly();
MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kCompiledBytecode);
return codegen.release();
}
CodeGenerator* OptimizingCompiler::TryCompileIntrinsic(
ArenaAllocator* allocator,
ArenaStack* arena_stack,
CodeVectorAllocator* code_allocator,
const DexCompilationUnit& dex_compilation_unit,
ArtMethod* method,
VariableSizedHandleScope* handles) const {
MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kAttemptIntrinsicCompilation);
const CompilerOptions& compiler_options = GetCompilerOptions();
InstructionSet instruction_set = compiler_options.GetInstructionSet();
const DexFile& dex_file = *dex_compilation_unit.GetDexFile();
uint32_t method_idx = dex_compilation_unit.GetDexMethodIndex();
// Always use the Thumb-2 assembler: some runtime functionality
// (like implicit stack overflow checks) assume Thumb-2.
DCHECK_NE(instruction_set, InstructionSet::kArm);
// Do not attempt to compile on architectures we do not support.
if (!IsInstructionSetSupported(instruction_set)) {
return nullptr;
}
HGraph* graph = new (allocator) HGraph(
allocator,
arena_stack,
handles,
dex_file,
method_idx,
compiler_options.GetInstructionSet(),
kInvalidInvokeType,
/* dead_reference_safe= */ true, // Intrinsics don't affect dead reference safety.
compiler_options.GetDebuggable(),
CompilationKind::kOptimized);
DCHECK(Runtime::Current()->IsAotCompiler());
DCHECK(method != nullptr);
graph->SetArtMethod(method);
std::unique_ptr<CodeGenerator> codegen(
CodeGenerator::Create(graph,
compiler_options,
compilation_stats_.get()));
if (codegen.get() == nullptr) {
return nullptr;
}
codegen->GetAssembler()->cfi().SetEnabled(compiler_options.GenerateAnyDebugInfo());
PassObserver pass_observer(graph,
codegen.get(),
visualizer_output_.get(),
compiler_options,
dump_mutex_);
{
VLOG(compiler) << "Building intrinsic graph " << pass_observer.GetMethodName();
PassScope scope(HGraphBuilder::kBuilderPassName, &pass_observer);
HGraphBuilder builder(graph,
CodeItemDebugInfoAccessor(), // Null code item.
&dex_compilation_unit,
&dex_compilation_unit,
codegen.get(),
compilation_stats_.get());
builder.BuildIntrinsicGraph(method);
}
OptimizationDef optimizations[] = {
// The codegen has a few assumptions that only the instruction simplifier
// can satisfy.
OptDef(OptimizationPass::kInstructionSimplifier),
};
RunOptimizations(graph,
codegen.get(),
dex_compilation_unit,
&pass_observer,
optimizations);
RunArchOptimizations(graph, codegen.get(), dex_compilation_unit, &pass_observer);
AllocateRegisters(graph,
codegen.get(),
&pass_observer,
compiler_options.GetRegisterAllocationStrategy(),
compilation_stats_.get());
if (!codegen->IsLeafMethod()) {
VLOG(compiler) << "Intrinsic method is not leaf: " << method->GetIntrinsic()
<< " " << graph->PrettyMethod();
return nullptr;
}
codegen->Compile(code_allocator);
pass_observer.DumpDisassembly();
VLOG(compiler) << "Compiled intrinsic: " << method->GetIntrinsic()
<< " " << graph->PrettyMethod();
MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kCompiledIntrinsic);
return codegen.release();
}
CompiledMethod* OptimizingCompiler::Compile(const dex::CodeItem* code_item,
uint32_t access_flags,
InvokeType invoke_type,
uint16_t class_def_idx,
uint32_t method_idx,
Handle<mirror::ClassLoader> jclass_loader,
const DexFile& dex_file,
Handle<mirror::DexCache> dex_cache) const {
const CompilerOptions& compiler_options = GetCompilerOptions();
DCHECK(compiler_options.IsAotCompiler());
CompiledMethod* compiled_method = nullptr;
Runtime* runtime = Runtime::Current();
DCHECK(runtime->IsAotCompiler());
const VerifiedMethod* verified_method = compiler_options.GetVerifiedMethod(&dex_file, method_idx);
DCHECK(!verified_method->HasRuntimeThrow());
if (compiler_options.IsMethodVerifiedWithoutFailures(method_idx, class_def_idx, dex_file) ||
verifier::CanCompilerHandleVerificationFailure(
verified_method->GetEncounteredVerificationFailures())) {
ArenaAllocator allocator(runtime->GetArenaPool());
ArenaStack arena_stack(runtime->GetArenaPool());
CodeVectorAllocator code_allocator(&allocator);
std::unique_ptr<CodeGenerator> codegen;
bool compiled_intrinsic = false;
{
ScopedObjectAccess soa(Thread::Current());
ArtMethod* method =
runtime->GetClassLinker()->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
method_idx, dex_cache, jclass_loader, /*referrer=*/ nullptr, invoke_type);
DCHECK_EQ(method == nullptr, soa.Self()->IsExceptionPending());
soa.Self()->ClearException(); // Suppress exception if any.
VariableSizedHandleScope handles(soa.Self());
Handle<mirror::Class> compiling_class =
handles.NewHandle(method != nullptr ? method->GetDeclaringClass() : nullptr);
DexCompilationUnit dex_compilation_unit(
jclass_loader,
runtime->GetClassLinker(),
dex_file,
code_item,
class_def_idx,
method_idx,
access_flags,
/*verified_method=*/ nullptr, // Not needed by the Optimizing compiler.
dex_cache,
compiling_class);
// All signature polymorphic methods are native.
DCHECK(method == nullptr || !method->IsSignaturePolymorphic());
// Go to native so that we don't block GC during compilation.
ScopedThreadSuspension sts(soa.Self(), kNative);
// Try to compile a fully intrinsified implementation.
if (method != nullptr && UNLIKELY(method->IsIntrinsic())) {
DCHECK(compiler_options.IsBootImage());
codegen.reset(
TryCompileIntrinsic(&allocator,
&arena_stack,
&code_allocator,
dex_compilation_unit,
method,
&handles));
if (codegen != nullptr) {
compiled_intrinsic = true;
}
}
if (codegen == nullptr) {
codegen.reset(
TryCompile(&allocator,
&arena_stack,
&code_allocator,
dex_compilation_unit,
method,
compiler_options.IsBaseline()
? CompilationKind::kBaseline
: CompilationKind::kOptimized,
&handles));
}
}
if (codegen.get() != nullptr) {
compiled_method = Emit(&allocator,
&code_allocator,
codegen.get(),
compiled_intrinsic ? nullptr : code_item);
if (compiled_intrinsic) {
compiled_method->MarkAsIntrinsic();
}
if (kArenaAllocatorCountAllocations) {
codegen.reset(); // Release codegen's ScopedArenaAllocator for memory accounting.
size_t total_allocated = allocator.BytesAllocated() + arena_stack.PeakBytesAllocated();
if (total_allocated > kArenaAllocatorMemoryReportThreshold) {
MemStats mem_stats(allocator.GetMemStats());
MemStats peak_stats(arena_stack.GetPeakStats());
LOG(INFO) << "Used " << total_allocated << " bytes of arena memory for compiling "
<< dex_file.PrettyMethod(method_idx)
<< "\n" << Dumpable<MemStats>(mem_stats)
<< "\n" << Dumpable<MemStats>(peak_stats);
}
}
}
} else {
MethodCompilationStat method_stat;
if (compiler_options.VerifyAtRuntime()) {
method_stat = MethodCompilationStat::kNotCompiledVerifyAtRuntime;
} else {
method_stat = MethodCompilationStat::kNotCompiledVerificationError;
}
MaybeRecordStat(compilation_stats_.get(), method_stat);
}
if (kIsDebugBuild &&
compiler_options.CompileArtTest() &&
IsInstructionSetSupported(compiler_options.GetInstructionSet())) {
// For testing purposes, we put a special marker on method names
// that should be compiled with this compiler (when the
// instruction set is supported). This makes sure we're not
// regressing.
std::string method_name = dex_file.PrettyMethod(method_idx);
bool shouldCompile = method_name.find("$opt$") != std::string::npos;
DCHECK((compiled_method != nullptr) || !shouldCompile) << "Didn't compile " << method_name;
}
return compiled_method;
}
static ScopedArenaVector<uint8_t> CreateJniStackMap(ScopedArenaAllocator* allocator,
const JniCompiledMethod& jni_compiled_method,
size_t code_size) {
// StackMapStream is quite large, so allocate it using the ScopedArenaAllocator
// to stay clear of the frame size limit.
std::unique_ptr<StackMapStream> stack_map_stream(
new (allocator) StackMapStream(allocator, jni_compiled_method.GetInstructionSet()));
stack_map_stream->BeginMethod(
jni_compiled_method.GetFrameSize(),
jni_compiled_method.GetCoreSpillMask(),
jni_compiled_method.GetFpSpillMask(),
/* num_dex_registers= */ 0,
/* baseline= */ false);
stack_map_stream->EndMethod(code_size);
return stack_map_stream->Encode();
}
CompiledMethod* OptimizingCompiler::JniCompile(uint32_t access_flags,
uint32_t method_idx,
const DexFile& dex_file,
Handle<mirror::DexCache> dex_cache) const {
Runtime* runtime = Runtime::Current();
ArenaAllocator allocator(runtime->GetArenaPool());
ArenaStack arena_stack(runtime->GetArenaPool());
const CompilerOptions& compiler_options = GetCompilerOptions();
if (compiler_options.IsBootImage()) {
ScopedObjectAccess soa(Thread::Current());
ArtMethod* method = runtime->GetClassLinker()->LookupResolvedMethod(
method_idx, dex_cache.Get(), /*class_loader=*/ nullptr);
// Try to compile a fully intrinsified implementation. Do not try to do this for
// signature polymorphic methods as the InstructionBuilder cannot handle them;
// and it would be useless as they always have a slow path for type conversions.
if (method != nullptr && UNLIKELY(method->IsIntrinsic()) && !method->IsSignaturePolymorphic()) {
VariableSizedHandleScope handles(soa.Self());
ScopedNullHandle<mirror::ClassLoader> class_loader; // null means boot class path loader.
Handle<mirror::Class> compiling_class = handles.NewHandle(method->GetDeclaringClass());
DexCompilationUnit dex_compilation_unit(
class_loader,
runtime->GetClassLinker(),
dex_file,
/*code_item=*/ nullptr,
/*class_def_idx=*/ DexFile::kDexNoIndex16,
method_idx,
access_flags,
/*verified_method=*/ nullptr,
dex_cache,
compiling_class);
CodeVectorAllocator code_allocator(&allocator);
// Go to native so that we don't block GC during compilation.
ScopedThreadSuspension sts(soa.Self(), kNative);
std::unique_ptr<CodeGenerator> codegen(
TryCompileIntrinsic(&allocator,
&arena_stack,
&code_allocator,
dex_compilation_unit,
method,
&handles));
if (codegen != nullptr) {
CompiledMethod* compiled_method = Emit(&allocator,
&code_allocator,
codegen.get(),
/* item= */ nullptr);
compiled_method->MarkAsIntrinsic();
return compiled_method;
}
}
}
JniCompiledMethod jni_compiled_method = ArtQuickJniCompileMethod(
compiler_options, access_flags, method_idx, dex_file);
MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kCompiledNativeStub);
ScopedArenaAllocator stack_map_allocator(&arena_stack); // Will hold the stack map.
ScopedArenaVector<uint8_t> stack_map = CreateJniStackMap(
&stack_map_allocator, jni_compiled_method, jni_compiled_method.GetCode().size());
return CompiledMethod::SwapAllocCompiledMethod(
GetCompiledMethodStorage(),
jni_compiled_method.GetInstructionSet(),
jni_compiled_method.GetCode(),
ArrayRef<const uint8_t>(stack_map),
jni_compiled_method.GetCfi(),
/* patches= */ ArrayRef<const linker::LinkerPatch>());
}
Compiler* CreateOptimizingCompiler(const CompilerOptions& compiler_options,
CompiledMethodStorage* storage) {
return new OptimizingCompiler(compiler_options, storage);
}
bool EncodeArtMethodInInlineInfo(ArtMethod* method ATTRIBUTE_UNUSED) {
// Note: the runtime is null only for unit testing.
return Runtime::Current() == nullptr || !Runtime::Current()->IsAotCompiler();
}
bool OptimizingCompiler::JitCompile(Thread* self,
jit::JitCodeCache* code_cache,
jit::JitMemoryRegion* region,
ArtMethod* method,
CompilationKind compilation_kind,
jit::JitLogger* jit_logger) {
const CompilerOptions& compiler_options = GetCompilerOptions();
// If the baseline flag was explicitly passed, change the compilation kind
// from optimized to baseline.
if (compiler_options.IsBaseline() && compilation_kind == CompilationKind::kOptimized) {
compilation_kind = CompilationKind::kBaseline;
}
DCHECK(compiler_options.IsJitCompiler());
DCHECK_EQ(compiler_options.IsJitCompilerForSharedCode(), code_cache->IsSharedRegion(*region));
StackHandleScope<3> hs(self);
Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
method->GetDeclaringClass()->GetClassLoader()));
Handle<mirror::DexCache> dex_cache(hs.NewHandle(method->GetDexCache()));
DCHECK(method->IsCompilable());
const DexFile* dex_file = method->GetDexFile();
const uint16_t class_def_idx = method->GetClassDefIndex();
const dex::CodeItem* code_item = method->GetCodeItem();
const uint32_t method_idx = method->GetDexMethodIndex();
const uint32_t access_flags = method->GetAccessFlags();
Runtime* runtime = Runtime::Current();
ArenaAllocator allocator(runtime->GetJitArenaPool());
if (UNLIKELY(method->IsNative())) {
JniCompiledMethod jni_compiled_method = ArtQuickJniCompileMethod(
compiler_options, access_flags, method_idx, *dex_file);
std::vector<Handle<mirror::Object>> roots;
ArenaSet<ArtMethod*, std::less<ArtMethod*>> cha_single_implementation_list(
allocator.Adapter(kArenaAllocCHA));
ArenaStack arena_stack(runtime->GetJitArenaPool());
// StackMapStream is large and it does not fit into this frame, so we need helper method.
ScopedArenaAllocator stack_map_allocator(&arena_stack); // Will hold the stack map.
ScopedArenaVector<uint8_t> stack_map = CreateJniStackMap(
&stack_map_allocator, jni_compiled_method, jni_compiled_method.GetCode().size());
ArrayRef<const uint8_t> reserved_code;
ArrayRef<const uint8_t> reserved_data;
if (!code_cache->Reserve(self,
region,
jni_compiled_method.GetCode().size(),
stack_map.size(),
/* number_of_roots= */ 0,
method,
/*out*/ &reserved_code,
/*out*/ &reserved_data)) {
MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kJitOutOfMemoryForCommit);
return false;
}
const uint8_t* code = reserved_code.data() + OatQuickMethodHeader::InstructionAlignedSize();
// Add debug info after we know the code location but before we update entry-point.
std::vector<uint8_t> debug_info;
if (compiler_options.GenerateAnyDebugInfo()) {
debug::MethodDebugInfo info = {};
// Simpleperf relies on art_jni_trampoline to detect jni methods.
info.custom_name = "art_jni_trampoline";
info.dex_file = dex_file;
info.class_def_index = class_def_idx;
info.dex_method_index = method_idx;
info.access_flags = access_flags;
info.code_item = code_item;
info.isa = jni_compiled_method.GetInstructionSet();
info.deduped = false;
info.is_native_debuggable = compiler_options.GetNativeDebuggable();
info.is_optimized = true;
info.is_code_address_text_relative = false;
info.code_address = reinterpret_cast<uintptr_t>(code);
info.code_size = jni_compiled_method.GetCode().size();
info.frame_size_in_bytes = jni_compiled_method.GetFrameSize();
info.code_info = nullptr;
info.cfi = jni_compiled_method.GetCfi();
debug_info = GenerateJitDebugInfo(info);
}
if (!code_cache->Commit(self,
region,
method,
reserved_code,
jni_compiled_method.GetCode(),
reserved_data,
roots,
ArrayRef<const uint8_t>(stack_map),
debug_info,
/* is_full_debug_info= */ compiler_options.GetGenerateDebugInfo(),
compilation_kind,
/* has_should_deoptimize_flag= */ false,
cha_single_implementation_list)) {
code_cache->Free(self, region, reserved_code.data(), reserved_data.data());
return false;
}
Runtime::Current()->GetJit()->AddMemoryUsage(method, allocator.BytesUsed());
if (jit_logger != nullptr) {
jit_logger->WriteLog(code, jni_compiled_method.GetCode().size(), method);
}
return true;
}
ArenaStack arena_stack(runtime->GetJitArenaPool());
CodeVectorAllocator code_allocator(&allocator);
VariableSizedHandleScope handles(self);
std::unique_ptr<CodeGenerator> codegen;
{
Handle<mirror::Class> compiling_class = handles.NewHandle(method->GetDeclaringClass());
DexCompilationUnit dex_compilation_unit(
class_loader,
runtime->GetClassLinker(),
*dex_file,
code_item,
class_def_idx,
method_idx,
access_flags,
/*verified_method=*/ nullptr,
dex_cache,
compiling_class);
// Go to native so that we don't block GC during compilation.
ScopedThreadSuspension sts(self, kNative);
codegen.reset(
TryCompile(&allocator,
&arena_stack,
&code_allocator,
dex_compilation_unit,
method,
compilation_kind,
&handles));
if (codegen.get() == nullptr) {
return false;
}
}
ScopedArenaVector<uint8_t> stack_map = codegen->BuildStackMaps(code_item);
ArrayRef<const uint8_t> reserved_code;
ArrayRef<const uint8_t> reserved_data;
if (!code_cache->Reserve(self,
region,
code_allocator.GetMemory().size(),
stack_map.size(),
/*number_of_roots=*/codegen->GetNumberOfJitRoots(),
method,
/*out*/ &reserved_code,
/*out*/ &reserved_data)) {
MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kJitOutOfMemoryForCommit);
return false;
}
const uint8_t* code = reserved_code.data() + OatQuickMethodHeader::InstructionAlignedSize();
const uint8_t* roots_data = reserved_data.data();
std::vector<Handle<mirror::Object>> roots;
codegen->EmitJitRoots(code_allocator.GetData(), roots_data, &roots);
// The root Handle<>s filled by the codegen reference entries in the VariableSizedHandleScope.
DCHECK(std::all_of(roots.begin(),
roots.end(),
[&handles](Handle<mirror::Object> root){
return handles.Contains(root.GetReference());
}));
// Add debug info after we know the code location but before we update entry-point.
std::vector<uint8_t> debug_info;
if (compiler_options.GenerateAnyDebugInfo()) {
debug::MethodDebugInfo info = {};
DCHECK(info.custom_name.empty());
info.dex_file = dex_file;
info.class_def_index = class_def_idx;
info.dex_method_index = method_idx;
info.access_flags = access_flags;
info.code_item = code_item;
info.isa = codegen->GetInstructionSet();
info.deduped = false;
info.is_native_debuggable = compiler_options.GetNativeDebuggable();
info.is_optimized = true;
info.is_code_address_text_relative = false;
info.code_address = reinterpret_cast<uintptr_t>(code);
info.code_size = code_allocator.GetMemory().size();
info.frame_size_in_bytes = codegen->GetFrameSize();
info.code_info = stack_map.size() == 0 ? nullptr : stack_map.data();
info.cfi = ArrayRef<const uint8_t>(*codegen->GetAssembler()->cfi().data());
debug_info = GenerateJitDebugInfo(info);
}
if (!code_cache->Commit(self,
region,
method,
reserved_code,
code_allocator.GetMemory(),
reserved_data,
roots,
ArrayRef<const uint8_t>(stack_map),
debug_info,
/* is_full_debug_info= */ compiler_options.GetGenerateDebugInfo(),
compilation_kind,
codegen->GetGraph()->HasShouldDeoptimizeFlag(),
codegen->GetGraph()->GetCHASingleImplementationList())) {
code_cache->Free(self, region, reserved_code.data(), reserved_data.data());
return false;
}
Runtime::Current()->GetJit()->AddMemoryUsage(method, allocator.BytesUsed());
if (jit_logger != nullptr) {
jit_logger->WriteLog(code, code_allocator.GetMemory().size(), method);
}
if (kArenaAllocatorCountAllocations) {
codegen.reset(); // Release codegen's ScopedArenaAllocator for memory accounting.
size_t total_allocated = allocator.BytesAllocated() + arena_stack.PeakBytesAllocated();
if (total_allocated > kArenaAllocatorMemoryReportThreshold) {
MemStats mem_stats(allocator.GetMemStats());
MemStats peak_stats(arena_stack.GetPeakStats());
LOG(INFO) << "Used " << total_allocated << " bytes of arena memory for compiling "
<< dex_file->PrettyMethod(method_idx)
<< "\n" << Dumpable<MemStats>(mem_stats)
<< "\n" << Dumpable<MemStats>(peak_stats);
}
}
return true;
}
std::vector<uint8_t> OptimizingCompiler::GenerateJitDebugInfo(const debug::MethodDebugInfo& info) {
const CompilerOptions& compiler_options = GetCompilerOptions();
if (compiler_options.GenerateAnyDebugInfo()) {
// If both flags are passed, generate full debug info.
const bool mini_debug_info = !compiler_options.GetGenerateDebugInfo();
// Create entry for the single method that we just compiled.
InstructionSet isa = compiler_options.GetInstructionSet();
const InstructionSetFeatures* features = compiler_options.GetInstructionSetFeatures();
return debug::MakeElfFileForJIT(isa, features, mini_debug_info, info);
}
return std::vector<uint8_t>();
}
} // namespace art