You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

465 lines
22 KiB

/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "scheduler.h"
#include "base/arena_allocator.h"
#include "builder.h"
#include "codegen_test_utils.h"
#include "common_compiler_test.h"
#include "load_store_analysis.h"
#include "nodes.h"
#include "optimizing_unit_test.h"
#include "pc_relative_fixups_x86.h"
#include "register_allocator.h"
#ifdef ART_ENABLE_CODEGEN_arm64
#include "scheduler_arm64.h"
#endif
#ifdef ART_ENABLE_CODEGEN_arm
#include "scheduler_arm.h"
#endif
namespace art {
// Return all combinations of ISA and code generator that are executable on
// hardware, or on simulator, and that we'd like to test.
static ::std::vector<CodegenTargetConfig> GetTargetConfigs() {
::std::vector<CodegenTargetConfig> v;
::std::vector<CodegenTargetConfig> test_config_candidates = {
#ifdef ART_ENABLE_CODEGEN_arm
// TODO: Should't this be `kThumb2` instead of `kArm` here?
CodegenTargetConfig(InstructionSet::kArm, create_codegen_arm_vixl32),
#endif
#ifdef ART_ENABLE_CODEGEN_arm64
CodegenTargetConfig(InstructionSet::kArm64, create_codegen_arm64),
#endif
#ifdef ART_ENABLE_CODEGEN_x86
CodegenTargetConfig(InstructionSet::kX86, create_codegen_x86),
#endif
#ifdef ART_ENABLE_CODEGEN_x86_64
CodegenTargetConfig(InstructionSet::kX86_64, create_codegen_x86_64),
#endif
};
for (const CodegenTargetConfig& test_config : test_config_candidates) {
if (CanExecute(test_config.GetInstructionSet())) {
v.push_back(test_config);
}
}
return v;
}
class SchedulerTest : public OptimizingUnitTest {
public:
SchedulerTest() : graph_(CreateGraph()) { }
// Build scheduling graph, and run target specific scheduling on it.
void TestBuildDependencyGraphAndSchedule(HScheduler* scheduler) {
HBasicBlock* entry = new (GetAllocator()) HBasicBlock(graph_);
HBasicBlock* block1 = new (GetAllocator()) HBasicBlock(graph_);
graph_->AddBlock(entry);
graph_->AddBlock(block1);
graph_->SetEntryBlock(entry);
// entry:
// array ParameterValue
// c1 IntConstant
// c2 IntConstant
// block1:
// add1 Add [c1, c2]
// add2 Add [add1, c2]
// mul Mul [add1, add2]
// div_check DivZeroCheck [add2] (env: add2, mul)
// div Div [add1, div_check]
// array_get1 ArrayGet [array, add1]
// array_set1 ArraySet [array, add1, add2]
// array_get2 ArrayGet [array, add1]
// array_set2 ArraySet [array, add1, add2]
HInstruction* array = new (GetAllocator()) HParameterValue(graph_->GetDexFile(),
dex::TypeIndex(0),
0,
DataType::Type::kReference);
HInstruction* c1 = graph_->GetIntConstant(1);
HInstruction* c2 = graph_->GetIntConstant(10);
HInstruction* add1 = new (GetAllocator()) HAdd(DataType::Type::kInt32, c1, c2);
HInstruction* add2 = new (GetAllocator()) HAdd(DataType::Type::kInt32, add1, c2);
HInstruction* mul = new (GetAllocator()) HMul(DataType::Type::kInt32, add1, add2);
HInstruction* div_check = new (GetAllocator()) HDivZeroCheck(add2, 0);
HInstruction* div = new (GetAllocator()) HDiv(DataType::Type::kInt32, add1, div_check, 0);
HInstruction* array_get1 =
new (GetAllocator()) HArrayGet(array, add1, DataType::Type::kInt32, 0);
HInstruction* array_set1 =
new (GetAllocator()) HArraySet(array, add1, add2, DataType::Type::kInt32, 0);
HInstruction* array_get2 =
new (GetAllocator()) HArrayGet(array, add1, DataType::Type::kInt32, 0);
HInstruction* array_set2 =
new (GetAllocator()) HArraySet(array, add1, add2, DataType::Type::kInt32, 0);
DCHECK(div_check->CanThrow());
entry->AddInstruction(array);
HInstruction* block_instructions[] = {add1,
add2,
mul,
div_check,
div,
array_get1,
array_set1,
array_get2,
array_set2};
for (HInstruction* instr : block_instructions) {
block1->AddInstruction(instr);
}
HEnvironment* environment = new (GetAllocator()) HEnvironment(GetAllocator(),
2,
graph_->GetArtMethod(),
0,
div_check);
div_check->SetRawEnvironment(environment);
environment->SetRawEnvAt(0, add2);
add2->AddEnvUseAt(div_check->GetEnvironment(), 0);
environment->SetRawEnvAt(1, mul);
mul->AddEnvUseAt(div_check->GetEnvironment(), 1);
TestSchedulingGraph scheduling_graph(GetScopedAllocator());
// Instructions must be inserted in reverse order into the scheduling graph.
for (HInstruction* instr : ReverseRange(block_instructions)) {
scheduling_graph.AddNode(instr);
}
// Should not have dependencies cross basic blocks.
ASSERT_FALSE(scheduling_graph.HasImmediateDataDependency(add1, c1));
ASSERT_FALSE(scheduling_graph.HasImmediateDataDependency(add2, c2));
// Define-use dependency.
ASSERT_TRUE(scheduling_graph.HasImmediateDataDependency(add2, add1));
ASSERT_FALSE(scheduling_graph.HasImmediateDataDependency(add1, add2));
ASSERT_TRUE(scheduling_graph.HasImmediateDataDependency(div_check, add2));
ASSERT_FALSE(scheduling_graph.HasImmediateDataDependency(div_check, add1));
ASSERT_TRUE(scheduling_graph.HasImmediateDataDependency(div, div_check));
ASSERT_TRUE(scheduling_graph.HasImmediateDataDependency(array_set1, add1));
ASSERT_TRUE(scheduling_graph.HasImmediateDataDependency(array_set1, add2));
// Read and write dependencies
ASSERT_TRUE(scheduling_graph.HasImmediateOtherDependency(array_set1, array_get1));
ASSERT_TRUE(scheduling_graph.HasImmediateOtherDependency(array_set2, array_get2));
ASSERT_TRUE(scheduling_graph.HasImmediateOtherDependency(array_get2, array_set1));
// Unnecessary dependency is not stored, we rely on transitive dependencies.
// The array_set2 -> array_get2 -> array_set1 dependencies are tested above.
ASSERT_FALSE(scheduling_graph.HasImmediateOtherDependency(array_set2, array_set1));
// Env dependency.
ASSERT_TRUE(scheduling_graph.HasImmediateOtherDependency(div_check, mul));
ASSERT_FALSE(scheduling_graph.HasImmediateOtherDependency(mul, div_check));
// CanThrow.
ASSERT_TRUE(scheduling_graph.HasImmediateOtherDependency(array_set1, div_check));
// Exercise the code path of target specific scheduler and SchedulingLatencyVisitor.
scheduler->Schedule(graph_);
}
void CompileWithRandomSchedulerAndRun(const std::vector<uint16_t>& data,
bool has_result,
int expected) {
for (CodegenTargetConfig target_config : GetTargetConfigs()) {
HGraph* graph = CreateCFG(data);
// Schedule the graph randomly.
HInstructionScheduling scheduling(graph, target_config.GetInstructionSet());
scheduling.Run(/*only_optimize_loop_blocks*/ false, /*schedule_randomly*/ true);
std::unique_ptr<CompilerOptions> compiler_options =
CommonCompilerTest::CreateCompilerOptions(target_config.GetInstructionSet(), "default");
RunCode(target_config,
*compiler_options,
graph,
[](HGraph* graph_arg) { RemoveSuspendChecks(graph_arg); },
has_result, expected);
}
}
void TestDependencyGraphOnAliasingArrayAccesses(HScheduler* scheduler) {
HBasicBlock* entry = new (GetAllocator()) HBasicBlock(graph_);
graph_->AddBlock(entry);
graph_->SetEntryBlock(entry);
graph_->BuildDominatorTree();
HInstruction* arr = new (GetAllocator()) HParameterValue(graph_->GetDexFile(),
dex::TypeIndex(0),
0,
DataType::Type::kReference);
HInstruction* i = new (GetAllocator()) HParameterValue(graph_->GetDexFile(),
dex::TypeIndex(1),
1,
DataType::Type::kInt32);
HInstruction* j = new (GetAllocator()) HParameterValue(graph_->GetDexFile(),
dex::TypeIndex(1),
1,
DataType::Type::kInt32);
HInstruction* object = new (GetAllocator()) HParameterValue(graph_->GetDexFile(),
dex::TypeIndex(0),
0,
DataType::Type::kReference);
HInstruction* c0 = graph_->GetIntConstant(0);
HInstruction* c1 = graph_->GetIntConstant(1);
HInstruction* add0 = new (GetAllocator()) HAdd(DataType::Type::kInt32, i, c0);
HInstruction* add1 = new (GetAllocator()) HAdd(DataType::Type::kInt32, i, c1);
HInstruction* sub0 = new (GetAllocator()) HSub(DataType::Type::kInt32, i, c0);
HInstruction* sub1 = new (GetAllocator()) HSub(DataType::Type::kInt32, i, c1);
HInstruction* arr_set_0 =
new (GetAllocator()) HArraySet(arr, c0, c0, DataType::Type::kInt32, 0);
HInstruction* arr_set_1 =
new (GetAllocator()) HArraySet(arr, c1, c0, DataType::Type::kInt32, 0);
HInstruction* arr_set_i = new (GetAllocator()) HArraySet(arr, i, c0, DataType::Type::kInt32, 0);
HInstruction* arr_set_add0 =
new (GetAllocator()) HArraySet(arr, add0, c0, DataType::Type::kInt32, 0);
HInstruction* arr_set_add1 =
new (GetAllocator()) HArraySet(arr, add1, c0, DataType::Type::kInt32, 0);
HInstruction* arr_set_sub0 =
new (GetAllocator()) HArraySet(arr, sub0, c0, DataType::Type::kInt32, 0);
HInstruction* arr_set_sub1 =
new (GetAllocator()) HArraySet(arr, sub1, c0, DataType::Type::kInt32, 0);
HInstruction* arr_set_j = new (GetAllocator()) HArraySet(arr, j, c0, DataType::Type::kInt32, 0);
HInstanceFieldSet* set_field10 = new (GetAllocator()) HInstanceFieldSet(object,
c1,
nullptr,
DataType::Type::kInt32,
MemberOffset(10),
false,
kUnknownFieldIndex,
kUnknownClassDefIndex,
graph_->GetDexFile(),
0);
HInstruction* block_instructions[] = {arr,
i,
j,
object,
add0,
add1,
sub0,
sub1,
arr_set_0,
arr_set_1,
arr_set_i,
arr_set_add0,
arr_set_add1,
arr_set_sub0,
arr_set_sub1,
arr_set_j,
set_field10};
for (HInstruction* instr : block_instructions) {
entry->AddInstruction(instr);
}
HeapLocationCollector heap_location_collector(
graph_, GetScopedAllocator(), LoadStoreAnalysisType::kBasic);
heap_location_collector.VisitBasicBlock(entry);
heap_location_collector.BuildAliasingMatrix();
TestSchedulingGraph scheduling_graph(GetScopedAllocator(), &heap_location_collector);
for (HInstruction* instr : ReverseRange(block_instructions)) {
// Build scheduling graph with memory access aliasing information
// from LSA/heap_location_collector.
scheduling_graph.AddNode(instr);
}
// LSA/HeapLocationCollector should see those ArraySet instructions.
ASSERT_EQ(heap_location_collector.GetNumberOfHeapLocations(), 9U);
ASSERT_TRUE(heap_location_collector.HasHeapStores());
// Test queries on HeapLocationCollector's aliasing matrix after load store analysis.
// HeapLocationCollector and SchedulingGraph should report consistent relationships.
size_t loc1 = HeapLocationCollector::kHeapLocationNotFound;
size_t loc2 = HeapLocationCollector::kHeapLocationNotFound;
// Test side effect dependency: array[0] and array[1]
loc1 = heap_location_collector.GetArrayHeapLocation(arr_set_0);
loc2 = heap_location_collector.GetArrayHeapLocation(arr_set_1);
ASSERT_FALSE(heap_location_collector.MayAlias(loc1, loc2));
ASSERT_FALSE(scheduling_graph.HasImmediateOtherDependency(arr_set_1, arr_set_0));
// Test side effect dependency based on LSA analysis: array[i] and array[j]
loc1 = heap_location_collector.GetArrayHeapLocation(arr_set_i);
loc2 = heap_location_collector.GetArrayHeapLocation(arr_set_j);
ASSERT_TRUE(heap_location_collector.MayAlias(loc1, loc2));
// Unnecessary dependency is not stored, we rely on transitive dependencies.
// The arr_set_j -> arr_set_sub0 -> arr_set_add0 -> arr_set_i dependencies are tested below.
ASSERT_FALSE(scheduling_graph.HasImmediateOtherDependency(arr_set_j, arr_set_i));
// Test side effect dependency based on LSA analysis: array[i] and array[i+0]
loc1 = heap_location_collector.GetArrayHeapLocation(arr_set_i);
loc2 = heap_location_collector.GetArrayHeapLocation(arr_set_add0);
ASSERT_TRUE(heap_location_collector.MayAlias(loc1, loc2));
ASSERT_TRUE(scheduling_graph.HasImmediateOtherDependency(arr_set_add0, arr_set_i));
// Test side effect dependency based on LSA analysis: array[i] and array[i-0]
loc1 = heap_location_collector.GetArrayHeapLocation(arr_set_i);
loc2 = heap_location_collector.GetArrayHeapLocation(arr_set_sub0);
ASSERT_TRUE(heap_location_collector.MayAlias(loc1, loc2));
// Unnecessary dependency is not stored, we rely on transitive dependencies.
ASSERT_FALSE(scheduling_graph.HasImmediateOtherDependency(arr_set_sub0, arr_set_i));
// Instead, we rely on arr_set_sub0 -> arr_set_add0 -> arr_set_i, the latter is tested above.
ASSERT_TRUE(scheduling_graph.HasImmediateOtherDependency(arr_set_sub0, arr_set_add0));
// Test side effect dependency based on LSA analysis: array[i] and array[i+1]
loc1 = heap_location_collector.GetArrayHeapLocation(arr_set_i);
loc2 = heap_location_collector.GetArrayHeapLocation(arr_set_add1);
ASSERT_FALSE(heap_location_collector.MayAlias(loc1, loc2));
ASSERT_FALSE(scheduling_graph.HasImmediateOtherDependency(arr_set_add1, arr_set_i));
// Test side effect dependency based on LSA analysis: array[i+1] and array[i-1]
loc1 = heap_location_collector.GetArrayHeapLocation(arr_set_add1);
loc2 = heap_location_collector.GetArrayHeapLocation(arr_set_sub1);
ASSERT_FALSE(heap_location_collector.MayAlias(loc1, loc2));
ASSERT_FALSE(scheduling_graph.HasImmediateOtherDependency(arr_set_sub1, arr_set_add1));
// Test side effect dependency based on LSA analysis: array[j] and all others array accesses
ASSERT_TRUE(scheduling_graph.HasImmediateOtherDependency(arr_set_j, arr_set_sub0));
ASSERT_TRUE(scheduling_graph.HasImmediateOtherDependency(arr_set_j, arr_set_add1));
ASSERT_TRUE(scheduling_graph.HasImmediateOtherDependency(arr_set_j, arr_set_sub1));
// Unnecessary dependencies are not stored, we rely on transitive dependencies.
ASSERT_FALSE(scheduling_graph.HasImmediateOtherDependency(arr_set_j, arr_set_i));
ASSERT_FALSE(scheduling_graph.HasImmediateOtherDependency(arr_set_j, arr_set_add0));
// Test that ArraySet and FieldSet should not have side effect dependency
ASSERT_FALSE(scheduling_graph.HasImmediateOtherDependency(arr_set_i, set_field10));
ASSERT_FALSE(scheduling_graph.HasImmediateOtherDependency(arr_set_j, set_field10));
// Exercise target specific scheduler and SchedulingLatencyVisitor.
scheduler->Schedule(graph_);
}
class TestSchedulingGraph : public SchedulingGraph {
public:
explicit TestSchedulingGraph(ScopedArenaAllocator* allocator,
const HeapLocationCollector *heap_location_collector = nullptr)
: SchedulingGraph(allocator, heap_location_collector) {}
bool HasImmediateDataDependency(const HInstruction* instruction,
const HInstruction* other_instruction) const {
const SchedulingNode* node = GetNode(instruction);
const SchedulingNode* other = GetNode(other_instruction);
if (node == nullptr || other == nullptr) {
// Both instructions must be in current basic block, i.e. the SchedulingGraph can see their
// corresponding SchedulingNode in the graph, and tell whether there is a dependency.
// Otherwise there is no dependency from SchedulingGraph's perspective, for example,
// instruction and other_instruction are in different basic blocks.
return false;
}
return node->HasDataDependency(other);
}
bool HasImmediateOtherDependency(const HInstruction* instruction,
const HInstruction* other_instruction) const {
const SchedulingNode* node = GetNode(instruction);
const SchedulingNode* other = GetNode(other_instruction);
if (node == nullptr || other == nullptr) {
// Both instructions must be in current basic block, i.e. the SchedulingGraph can see their
// corresponding SchedulingNode in the graph, and tell whether there is a dependency.
// Otherwise there is no dependency from SchedulingGraph's perspective, for example,
// instruction and other_instruction are in different basic blocks.
return false;
}
return node->HasOtherDependency(other);
}
};
HGraph* graph_;
};
#if defined(ART_ENABLE_CODEGEN_arm64)
TEST_F(SchedulerTest, DependencyGraphAndSchedulerARM64) {
CriticalPathSchedulingNodeSelector critical_path_selector;
arm64::HSchedulerARM64 scheduler(&critical_path_selector);
TestBuildDependencyGraphAndSchedule(&scheduler);
}
TEST_F(SchedulerTest, ArrayAccessAliasingARM64) {
CriticalPathSchedulingNodeSelector critical_path_selector;
arm64::HSchedulerARM64 scheduler(&critical_path_selector);
TestDependencyGraphOnAliasingArrayAccesses(&scheduler);
}
#endif
#if defined(ART_ENABLE_CODEGEN_arm)
TEST_F(SchedulerTest, DependencyGraphAndSchedulerARM) {
CriticalPathSchedulingNodeSelector critical_path_selector;
arm::SchedulingLatencyVisitorARM arm_latency_visitor(/*CodeGenerator*/ nullptr);
arm::HSchedulerARM scheduler(&critical_path_selector, &arm_latency_visitor);
TestBuildDependencyGraphAndSchedule(&scheduler);
}
TEST_F(SchedulerTest, ArrayAccessAliasingARM) {
CriticalPathSchedulingNodeSelector critical_path_selector;
arm::SchedulingLatencyVisitorARM arm_latency_visitor(/*CodeGenerator*/ nullptr);
arm::HSchedulerARM scheduler(&critical_path_selector, &arm_latency_visitor);
TestDependencyGraphOnAliasingArrayAccesses(&scheduler);
}
#endif
TEST_F(SchedulerTest, RandomScheduling) {
//
// Java source: crafted code to make sure (random) scheduling should get correct result.
//
// int result = 0;
// float fr = 10.0f;
// for (int i = 1; i < 10; i++) {
// fr ++;
// int t1 = result >> i;
// int t2 = result * i;
// result = result + t1 - t2;
// fr = fr / i;
// result += (int)fr;
// }
// return result;
//
const std::vector<uint16_t> data = SIX_REGISTERS_CODE_ITEM(
Instruction::CONST_4 | 0 << 12 | 2 << 8, // const/4 v2, #int 0
Instruction::CONST_HIGH16 | 0 << 8, 0x4120, // const/high16 v0, #float 10.0 // #41200000
Instruction::CONST_4 | 1 << 12 | 1 << 8, // const/4 v1, #int 1
Instruction::CONST_16 | 5 << 8, 0x000a, // const/16 v5, #int 10
Instruction::IF_GE | 5 << 12 | 1 << 8, 0x0014, // if-ge v1, v5, 001a // +0014
Instruction::CONST_HIGH16 | 5 << 8, 0x3f80, // const/high16 v5, #float 1.0 // #3f800000
Instruction::ADD_FLOAT_2ADDR | 5 << 12 | 0 << 8, // add-float/2addr v0, v5
Instruction::SHR_INT | 3 << 8, 1 << 8 | 2 , // shr-int v3, v2, v1
Instruction::MUL_INT | 4 << 8, 1 << 8 | 2, // mul-int v4, v2, v1
Instruction::ADD_INT | 5 << 8, 3 << 8 | 2, // add-int v5, v2, v3
Instruction::SUB_INT | 2 << 8, 4 << 8 | 5, // sub-int v2, v5, v4
Instruction::INT_TO_FLOAT | 1 << 12 | 5 << 8, // int-to-float v5, v1
Instruction::DIV_FLOAT_2ADDR | 5 << 12 | 0 << 8, // div-float/2addr v0, v5
Instruction::FLOAT_TO_INT | 0 << 12 | 5 << 8, // float-to-int v5, v0
Instruction::ADD_INT_2ADDR | 5 << 12 | 2 << 8, // add-int/2addr v2, v5
Instruction::ADD_INT_LIT8 | 1 << 8, 1 << 8 | 1, // add-int/lit8 v1, v1, #int 1 // #01
Instruction::GOTO | 0xeb << 8, // goto 0004 // -0015
Instruction::RETURN | 2 << 8); // return v2
constexpr int kNumberOfRuns = 10;
for (int i = 0; i < kNumberOfRuns; ++i) {
CompileWithRandomSchedulerAndRun(data, true, 138774);
}
}
} // namespace art