You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

476 lines
14 KiB

/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "fault_handler.h"
#include <sys/ucontext.h>
#include "arch/instruction_set.h"
#include "art_method.h"
#include "base/enums.h"
#include "base/hex_dump.h"
#include "base/logging.h" // For VLOG.
#include "base/macros.h"
#include "base/safe_copy.h"
#include "runtime_globals.h"
#include "thread-current-inl.h"
#if defined(__APPLE__)
#define ucontext __darwin_ucontext
#if defined(__x86_64__)
// 64 bit mac build.
#define CTX_ESP uc_mcontext->__ss.__rsp
#define CTX_EIP uc_mcontext->__ss.__rip
#define CTX_EAX uc_mcontext->__ss.__rax
#define CTX_METHOD uc_mcontext->__ss.__rdi
#define CTX_RDI uc_mcontext->__ss.__rdi
#define CTX_JMP_BUF uc_mcontext->__ss.__rdi
#else
// 32 bit mac build.
#define CTX_ESP uc_mcontext->__ss.__esp
#define CTX_EIP uc_mcontext->__ss.__eip
#define CTX_EAX uc_mcontext->__ss.__eax
#define CTX_METHOD uc_mcontext->__ss.__eax
#define CTX_JMP_BUF uc_mcontext->__ss.__eax
#endif
#elif defined(__x86_64__)
// 64 bit linux build.
#define CTX_ESP uc_mcontext.gregs[REG_RSP]
#define CTX_EIP uc_mcontext.gregs[REG_RIP]
#define CTX_EAX uc_mcontext.gregs[REG_RAX]
#define CTX_METHOD uc_mcontext.gregs[REG_RDI]
#define CTX_RDI uc_mcontext.gregs[REG_RDI]
#define CTX_JMP_BUF uc_mcontext.gregs[REG_RDI]
#else
// 32 bit linux build.
#define CTX_ESP uc_mcontext.gregs[REG_ESP]
#define CTX_EIP uc_mcontext.gregs[REG_EIP]
#define CTX_EAX uc_mcontext.gregs[REG_EAX]
#define CTX_METHOD uc_mcontext.gregs[REG_EAX]
#define CTX_JMP_BUF uc_mcontext.gregs[REG_EAX]
#endif
//
// X86 (and X86_64) specific fault handler functions.
//
namespace art {
extern "C" void art_quick_throw_null_pointer_exception_from_signal();
extern "C" void art_quick_throw_stack_overflow();
extern "C" void art_quick_test_suspend();
// Get the size of an instruction in bytes.
// Return 0 if the instruction is not handled.
static uint32_t GetInstructionSize(const uint8_t* pc) {
// Don't segfault if pc points to garbage.
char buf[15]; // x86/x86-64 have a maximum instruction length of 15 bytes.
ssize_t bytes = SafeCopy(buf, pc, sizeof(buf));
if (bytes == 0) {
// Nothing was readable.
return 0;
}
if (bytes == -1) {
// SafeCopy not supported, assume that the entire range is readable.
bytes = 16;
} else {
pc = reinterpret_cast<uint8_t*>(buf);
}
#define INCREMENT_PC() \
do { \
pc++; \
if (pc - startpc > bytes) { \
return 0; \
} \
} while (0)
#if defined(__x86_64)
const bool x86_64 = true;
#else
const bool x86_64 = false;
#endif
const uint8_t* startpc = pc;
uint8_t opcode = *pc;
INCREMENT_PC();
uint8_t modrm;
bool has_modrm = false;
bool two_byte = false;
uint32_t displacement_size = 0;
uint32_t immediate_size = 0;
bool operand_size_prefix = false;
// Prefixes.
while (true) {
bool prefix_present = false;
switch (opcode) {
// Group 3
case 0x66:
operand_size_prefix = true;
FALLTHROUGH_INTENDED;
// Group 1
case 0xf0:
case 0xf2:
case 0xf3:
// Group 2
case 0x2e:
case 0x36:
case 0x3e:
case 0x26:
case 0x64:
case 0x65:
// Group 4
case 0x67:
opcode = *pc;
INCREMENT_PC();
prefix_present = true;
break;
}
if (!prefix_present) {
break;
}
}
if (x86_64 && opcode >= 0x40 && opcode <= 0x4f) {
opcode = *pc;
INCREMENT_PC();
}
if (opcode == 0x0f) {
// Two byte opcode
two_byte = true;
opcode = *pc;
INCREMENT_PC();
}
bool unhandled_instruction = false;
if (two_byte) {
switch (opcode) {
case 0x10: // vmovsd/ss
case 0x11: // vmovsd/ss
case 0xb6: // movzx
case 0xb7:
case 0xbe: // movsx
case 0xbf:
modrm = *pc;
INCREMENT_PC();
has_modrm = true;
break;
default:
unhandled_instruction = true;
break;
}
} else {
switch (opcode) {
case 0x88: // mov byte
case 0x89: // mov
case 0x8b:
case 0x38: // cmp with memory.
case 0x39:
case 0x3a:
case 0x3b:
case 0x3c:
case 0x3d:
case 0x85: // test.
modrm = *pc;
INCREMENT_PC();
has_modrm = true;
break;
case 0x80: // group 1, byte immediate.
case 0x83:
case 0xc6:
modrm = *pc;
INCREMENT_PC();
has_modrm = true;
immediate_size = 1;
break;
case 0x81: // group 1, word immediate.
case 0xc7: // mov
modrm = *pc;
INCREMENT_PC();
has_modrm = true;
immediate_size = operand_size_prefix ? 2 : 4;
break;
case 0xf6:
case 0xf7:
modrm = *pc;
INCREMENT_PC();
has_modrm = true;
switch ((modrm >> 3) & 7) { // Extract "reg/opcode" from "modr/m".
case 0: // test
immediate_size = (opcode == 0xf6) ? 1 : (operand_size_prefix ? 2 : 4);
break;
case 2: // not
case 3: // neg
case 4: // mul
case 5: // imul
case 6: // div
case 7: // idiv
break;
default:
unhandled_instruction = true;
break;
}
break;
default:
unhandled_instruction = true;
break;
}
}
if (unhandled_instruction) {
VLOG(signals) << "Unhandled x86 instruction with opcode " << static_cast<int>(opcode);
return 0;
}
if (has_modrm) {
uint8_t mod = (modrm >> 6) & 3U /* 0b11 */;
// Check for SIB.
if (mod != 3U /* 0b11 */ && (modrm & 7U /* 0b111 */) == 4) {
INCREMENT_PC(); // SIB
}
switch (mod) {
case 0U /* 0b00 */: break;
case 1U /* 0b01 */: displacement_size = 1; break;
case 2U /* 0b10 */: displacement_size = 4; break;
case 3U /* 0b11 */:
break;
}
}
// Skip displacement and immediate.
pc += displacement_size + immediate_size;
VLOG(signals) << "x86 instruction length calculated as " << (pc - startpc);
if (pc - startpc > bytes) {
return 0;
}
return pc - startpc;
}
void FaultManager::GetMethodAndReturnPcAndSp(siginfo_t* siginfo, void* context,
ArtMethod** out_method,
uintptr_t* out_return_pc,
uintptr_t* out_sp,
bool* out_is_stack_overflow) {
struct ucontext* uc = reinterpret_cast<struct ucontext*>(context);
*out_sp = static_cast<uintptr_t>(uc->CTX_ESP);
VLOG(signals) << "sp: " << std::hex << *out_sp;
if (*out_sp == 0) {
return;
}
// In the case of a stack overflow, the stack is not valid and we can't
// get the method from the top of the stack. However it's in EAX(x86)/RDI(x86_64).
uintptr_t* fault_addr = reinterpret_cast<uintptr_t*>(siginfo->si_addr);
uintptr_t* overflow_addr = reinterpret_cast<uintptr_t*>(
#if defined(__x86_64__)
reinterpret_cast<uint8_t*>(*out_sp) - GetStackOverflowReservedBytes(InstructionSet::kX86_64));
#else
reinterpret_cast<uint8_t*>(*out_sp) - GetStackOverflowReservedBytes(InstructionSet::kX86));
#endif
if (overflow_addr == fault_addr) {
*out_method = reinterpret_cast<ArtMethod*>(uc->CTX_METHOD);
*out_is_stack_overflow = true;
} else {
// The method is at the top of the stack.
*out_method = *reinterpret_cast<ArtMethod**>(*out_sp);
*out_is_stack_overflow = false;
}
uint8_t* pc = reinterpret_cast<uint8_t*>(uc->CTX_EIP);
VLOG(signals) << HexDump(pc, 32, true, "PC ");
if (pc == nullptr) {
// Somebody jumped to 0x0. Definitely not ours, and will definitely segfault below.
*out_method = nullptr;
return;
}
uint32_t instr_size = GetInstructionSize(pc);
if (instr_size == 0) {
// Unknown instruction, tell caller it's not ours.
*out_method = nullptr;
return;
}
*out_return_pc = reinterpret_cast<uintptr_t>(pc + instr_size);
}
bool NullPointerHandler::Action(int, siginfo_t* sig, void* context) {
if (!IsValidImplicitCheck(sig)) {
return false;
}
struct ucontext *uc = reinterpret_cast<struct ucontext*>(context);
uint8_t* pc = reinterpret_cast<uint8_t*>(uc->CTX_EIP);
uint8_t* sp = reinterpret_cast<uint8_t*>(uc->CTX_ESP);
uint32_t instr_size = GetInstructionSize(pc);
if (instr_size == 0) {
// Unknown instruction, can't really happen.
return false;
}
// We need to arrange for the signal handler to return to the null pointer
// exception generator. The return address must be the address of the
// next instruction (this instruction + instruction size). The return address
// is on the stack at the top address of the current frame.
// Push the return address and fault address onto the stack.
uintptr_t retaddr = reinterpret_cast<uintptr_t>(pc + instr_size);
uintptr_t* next_sp = reinterpret_cast<uintptr_t*>(sp - 2 * sizeof(uintptr_t));
next_sp[1] = retaddr;
next_sp[0] = reinterpret_cast<uintptr_t>(sig->si_addr);
uc->CTX_ESP = reinterpret_cast<uintptr_t>(next_sp);
uc->CTX_EIP = reinterpret_cast<uintptr_t>(
art_quick_throw_null_pointer_exception_from_signal);
VLOG(signals) << "Generating null pointer exception";
return true;
}
// A suspend check is done using the following instruction sequence:
// (x86)
// 0xf720f1df: 648B058C000000 mov eax, fs:[0x8c] ; suspend_trigger
// .. some intervening instructions.
// 0xf720f1e6: 8500 test eax, [eax]
// (x86_64)
// 0x7f579de45d9e: 65488B0425A8000000 movq rax, gs:[0xa8] ; suspend_trigger
// .. some intervening instructions.
// 0x7f579de45da7: 8500 test eax, [eax]
// The offset from fs is Thread::ThreadSuspendTriggerOffset().
// To check for a suspend check, we examine the instructions that caused
// the fault.
bool SuspensionHandler::Action(int, siginfo_t*, void* context) {
// These are the instructions to check for. The first one is the mov eax, fs:[xxx]
// where xxx is the offset of the suspend trigger.
uint32_t trigger = Thread::ThreadSuspendTriggerOffset<kRuntimePointerSize>().Int32Value();
VLOG(signals) << "Checking for suspension point";
#if defined(__x86_64__)
uint8_t checkinst1[] = {0x65, 0x48, 0x8b, 0x04, 0x25, static_cast<uint8_t>(trigger & 0xff),
static_cast<uint8_t>((trigger >> 8) & 0xff), 0, 0};
#else
uint8_t checkinst1[] = {0x64, 0x8b, 0x05, static_cast<uint8_t>(trigger & 0xff),
static_cast<uint8_t>((trigger >> 8) & 0xff), 0, 0};
#endif
uint8_t checkinst2[] = {0x85, 0x00};
struct ucontext *uc = reinterpret_cast<struct ucontext*>(context);
uint8_t* pc = reinterpret_cast<uint8_t*>(uc->CTX_EIP);
uint8_t* sp = reinterpret_cast<uint8_t*>(uc->CTX_ESP);
if (pc[0] != checkinst2[0] || pc[1] != checkinst2[1]) {
// Second instruction is not correct (test eax,[eax]).
VLOG(signals) << "Not a suspension point";
return false;
}
// The first instruction can a little bit up the stream due to load hoisting
// in the compiler.
uint8_t* limit = pc - 100; // Compiler will hoist to a max of 20 instructions.
uint8_t* ptr = pc - sizeof(checkinst1);
bool found = false;
while (ptr > limit) {
if (memcmp(ptr, checkinst1, sizeof(checkinst1)) == 0) {
found = true;
break;
}
ptr -= 1;
}
if (found) {
VLOG(signals) << "suspend check match";
// We need to arrange for the signal handler to return to the null pointer
// exception generator. The return address must be the address of the
// next instruction (this instruction + 2). The return address
// is on the stack at the top address of the current frame.
// Push the return address onto the stack.
uintptr_t retaddr = reinterpret_cast<uintptr_t>(pc + 2);
uintptr_t* next_sp = reinterpret_cast<uintptr_t*>(sp - sizeof(uintptr_t));
*next_sp = retaddr;
uc->CTX_ESP = reinterpret_cast<uintptr_t>(next_sp);
uc->CTX_EIP = reinterpret_cast<uintptr_t>(art_quick_test_suspend);
// Now remove the suspend trigger that caused this fault.
Thread::Current()->RemoveSuspendTrigger();
VLOG(signals) << "removed suspend trigger invoking test suspend";
return true;
}
VLOG(signals) << "Not a suspend check match, first instruction mismatch";
return false;
}
// The stack overflow check is done using the following instruction:
// test eax, [esp+ -xxx]
// where 'xxx' is the size of the overflow area.
//
// This is done before any frame is established in the method. The return
// address for the previous method is on the stack at ESP.
bool StackOverflowHandler::Action(int, siginfo_t* info, void* context) {
struct ucontext *uc = reinterpret_cast<struct ucontext*>(context);
uintptr_t sp = static_cast<uintptr_t>(uc->CTX_ESP);
uintptr_t fault_addr = reinterpret_cast<uintptr_t>(info->si_addr);
VLOG(signals) << "fault_addr: " << std::hex << fault_addr;
VLOG(signals) << "checking for stack overflow, sp: " << std::hex << sp <<
", fault_addr: " << fault_addr;
#if defined(__x86_64__)
uintptr_t overflow_addr = sp - GetStackOverflowReservedBytes(InstructionSet::kX86_64);
#else
uintptr_t overflow_addr = sp - GetStackOverflowReservedBytes(InstructionSet::kX86);
#endif
// Check that the fault address is the value expected for a stack overflow.
if (fault_addr != overflow_addr) {
VLOG(signals) << "Not a stack overflow";
return false;
}
VLOG(signals) << "Stack overflow found";
// Since the compiler puts the implicit overflow
// check before the callee save instructions, the SP is already pointing to
// the previous frame.
// Now arrange for the signal handler to return to art_quick_throw_stack_overflow.
uc->CTX_EIP = reinterpret_cast<uintptr_t>(art_quick_throw_stack_overflow);
return true;
}
} // namespace art