|
|
/*
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
% %
|
|
|
% %
|
|
|
% %
|
|
|
% FFFFF EEEEE AAA TTTTT U U RRRR EEEEE %
|
|
|
% F E A A T U U R R E %
|
|
|
% FFF EEE AAAAA T U U RRRR EEE %
|
|
|
% F E A A T U U R R E %
|
|
|
% F EEEEE A A T UUU R R EEEEE %
|
|
|
% %
|
|
|
% %
|
|
|
% MagickCore Image Feature Methods %
|
|
|
% %
|
|
|
% Software Design %
|
|
|
% Cristy %
|
|
|
% July 1992 %
|
|
|
% %
|
|
|
% %
|
|
|
% Copyright 1999-2021 ImageMagick Studio LLC, a non-profit organization %
|
|
|
% dedicated to making software imaging solutions freely available. %
|
|
|
% %
|
|
|
% You may not use this file except in compliance with the License. You may %
|
|
|
% obtain a copy of the License at %
|
|
|
% %
|
|
|
% https://imagemagick.org/script/license.php %
|
|
|
% %
|
|
|
% Unless required by applicable law or agreed to in writing, software %
|
|
|
% distributed under the License is distributed on an "AS IS" BASIS, %
|
|
|
% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
|
|
|
% See the License for the specific language governing permissions and %
|
|
|
% limitations under the License. %
|
|
|
% %
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
%
|
|
|
%
|
|
|
%
|
|
|
*/
|
|
|
|
|
|
/*
|
|
|
Include declarations.
|
|
|
*/
|
|
|
#include "MagickCore/studio.h"
|
|
|
#include "MagickCore/animate.h"
|
|
|
#include "MagickCore/artifact.h"
|
|
|
#include "MagickCore/blob.h"
|
|
|
#include "MagickCore/blob-private.h"
|
|
|
#include "MagickCore/cache.h"
|
|
|
#include "MagickCore/cache-private.h"
|
|
|
#include "MagickCore/cache-view.h"
|
|
|
#include "MagickCore/channel.h"
|
|
|
#include "MagickCore/client.h"
|
|
|
#include "MagickCore/color.h"
|
|
|
#include "MagickCore/color-private.h"
|
|
|
#include "MagickCore/colorspace.h"
|
|
|
#include "MagickCore/colorspace-private.h"
|
|
|
#include "MagickCore/composite.h"
|
|
|
#include "MagickCore/composite-private.h"
|
|
|
#include "MagickCore/compress.h"
|
|
|
#include "MagickCore/constitute.h"
|
|
|
#include "MagickCore/display.h"
|
|
|
#include "MagickCore/draw.h"
|
|
|
#include "MagickCore/enhance.h"
|
|
|
#include "MagickCore/exception.h"
|
|
|
#include "MagickCore/exception-private.h"
|
|
|
#include "MagickCore/feature.h"
|
|
|
#include "MagickCore/gem.h"
|
|
|
#include "MagickCore/geometry.h"
|
|
|
#include "MagickCore/list.h"
|
|
|
#include "MagickCore/image-private.h"
|
|
|
#include "MagickCore/magic.h"
|
|
|
#include "MagickCore/magick.h"
|
|
|
#include "MagickCore/matrix.h"
|
|
|
#include "MagickCore/memory_.h"
|
|
|
#include "MagickCore/module.h"
|
|
|
#include "MagickCore/monitor.h"
|
|
|
#include "MagickCore/monitor-private.h"
|
|
|
#include "MagickCore/morphology-private.h"
|
|
|
#include "MagickCore/option.h"
|
|
|
#include "MagickCore/paint.h"
|
|
|
#include "MagickCore/pixel-accessor.h"
|
|
|
#include "MagickCore/profile.h"
|
|
|
#include "MagickCore/property.h"
|
|
|
#include "MagickCore/quantize.h"
|
|
|
#include "MagickCore/quantum-private.h"
|
|
|
#include "MagickCore/random_.h"
|
|
|
#include "MagickCore/resource_.h"
|
|
|
#include "MagickCore/segment.h"
|
|
|
#include "MagickCore/semaphore.h"
|
|
|
#include "MagickCore/signature-private.h"
|
|
|
#include "MagickCore/string_.h"
|
|
|
#include "MagickCore/thread-private.h"
|
|
|
#include "MagickCore/timer.h"
|
|
|
#include "MagickCore/utility.h"
|
|
|
#include "MagickCore/version.h"
|
|
|
|
|
|
/*
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
% %
|
|
|
% %
|
|
|
% %
|
|
|
% C a n n y E d g e I m a g e %
|
|
|
% %
|
|
|
% %
|
|
|
% %
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
%
|
|
|
% CannyEdgeImage() uses a multi-stage algorithm to detect a wide range of
|
|
|
% edges in images.
|
|
|
%
|
|
|
% The format of the CannyEdgeImage method is:
|
|
|
%
|
|
|
% Image *CannyEdgeImage(const Image *image,const double radius,
|
|
|
% const double sigma,const double lower_percent,
|
|
|
% const double upper_percent,ExceptionInfo *exception)
|
|
|
%
|
|
|
% A description of each parameter follows:
|
|
|
%
|
|
|
% o image: the image.
|
|
|
%
|
|
|
% o radius: the radius of the gaussian smoothing filter.
|
|
|
%
|
|
|
% o sigma: the sigma of the gaussian smoothing filter.
|
|
|
%
|
|
|
% o lower_percent: percentage of edge pixels in the lower threshold.
|
|
|
%
|
|
|
% o upper_percent: percentage of edge pixels in the upper threshold.
|
|
|
%
|
|
|
% o exception: return any errors or warnings in this structure.
|
|
|
%
|
|
|
*/
|
|
|
|
|
|
typedef struct _CannyInfo
|
|
|
{
|
|
|
double
|
|
|
magnitude,
|
|
|
intensity;
|
|
|
|
|
|
int
|
|
|
orientation;
|
|
|
|
|
|
ssize_t
|
|
|
x,
|
|
|
y;
|
|
|
} CannyInfo;
|
|
|
|
|
|
static inline MagickBooleanType IsAuthenticPixel(const Image *image,
|
|
|
const ssize_t x,const ssize_t y)
|
|
|
{
|
|
|
if ((x < 0) || (x >= (ssize_t) image->columns))
|
|
|
return(MagickFalse);
|
|
|
if ((y < 0) || (y >= (ssize_t) image->rows))
|
|
|
return(MagickFalse);
|
|
|
return(MagickTrue);
|
|
|
}
|
|
|
|
|
|
static MagickBooleanType TraceEdges(Image *edge_image,CacheView *edge_view,
|
|
|
MatrixInfo *canny_cache,const ssize_t x,const ssize_t y,
|
|
|
const double lower_threshold,ExceptionInfo *exception)
|
|
|
{
|
|
|
CannyInfo
|
|
|
edge,
|
|
|
pixel;
|
|
|
|
|
|
MagickBooleanType
|
|
|
status;
|
|
|
|
|
|
Quantum
|
|
|
*q;
|
|
|
|
|
|
ssize_t
|
|
|
i;
|
|
|
|
|
|
q=GetCacheViewAuthenticPixels(edge_view,x,y,1,1,exception);
|
|
|
if (q == (Quantum *) NULL)
|
|
|
return(MagickFalse);
|
|
|
*q=QuantumRange;
|
|
|
status=SyncCacheViewAuthenticPixels(edge_view,exception);
|
|
|
if (status == MagickFalse)
|
|
|
return(MagickFalse);
|
|
|
if (GetMatrixElement(canny_cache,0,0,&edge) == MagickFalse)
|
|
|
return(MagickFalse);
|
|
|
edge.x=x;
|
|
|
edge.y=y;
|
|
|
if (SetMatrixElement(canny_cache,0,0,&edge) == MagickFalse)
|
|
|
return(MagickFalse);
|
|
|
for (i=1; i != 0; )
|
|
|
{
|
|
|
ssize_t
|
|
|
v;
|
|
|
|
|
|
i--;
|
|
|
status=GetMatrixElement(canny_cache,i,0,&edge);
|
|
|
if (status == MagickFalse)
|
|
|
return(MagickFalse);
|
|
|
for (v=(-1); v <= 1; v++)
|
|
|
{
|
|
|
ssize_t
|
|
|
u;
|
|
|
|
|
|
for (u=(-1); u <= 1; u++)
|
|
|
{
|
|
|
if ((u == 0) && (v == 0))
|
|
|
continue;
|
|
|
if (IsAuthenticPixel(edge_image,edge.x+u,edge.y+v) == MagickFalse)
|
|
|
continue;
|
|
|
/*
|
|
|
Not an edge if gradient value is below the lower threshold.
|
|
|
*/
|
|
|
q=GetCacheViewAuthenticPixels(edge_view,edge.x+u,edge.y+v,1,1,
|
|
|
exception);
|
|
|
if (q == (Quantum *) NULL)
|
|
|
return(MagickFalse);
|
|
|
status=GetMatrixElement(canny_cache,edge.x+u,edge.y+v,&pixel);
|
|
|
if (status == MagickFalse)
|
|
|
return(MagickFalse);
|
|
|
if ((GetPixelIntensity(edge_image,q) == 0.0) &&
|
|
|
(pixel.intensity >= lower_threshold))
|
|
|
{
|
|
|
*q=QuantumRange;
|
|
|
status=SyncCacheViewAuthenticPixels(edge_view,exception);
|
|
|
if (status == MagickFalse)
|
|
|
return(MagickFalse);
|
|
|
edge.x+=u;
|
|
|
edge.y+=v;
|
|
|
status=SetMatrixElement(canny_cache,i,0,&edge);
|
|
|
if (status == MagickFalse)
|
|
|
return(MagickFalse);
|
|
|
i++;
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
return(MagickTrue);
|
|
|
}
|
|
|
|
|
|
MagickExport Image *CannyEdgeImage(const Image *image,const double radius,
|
|
|
const double sigma,const double lower_percent,const double upper_percent,
|
|
|
ExceptionInfo *exception)
|
|
|
{
|
|
|
#define CannyEdgeImageTag "CannyEdge/Image"
|
|
|
|
|
|
CacheView
|
|
|
*edge_view;
|
|
|
|
|
|
CannyInfo
|
|
|
element;
|
|
|
|
|
|
char
|
|
|
geometry[MagickPathExtent];
|
|
|
|
|
|
double
|
|
|
lower_threshold,
|
|
|
max,
|
|
|
min,
|
|
|
upper_threshold;
|
|
|
|
|
|
Image
|
|
|
*edge_image;
|
|
|
|
|
|
KernelInfo
|
|
|
*kernel_info;
|
|
|
|
|
|
MagickBooleanType
|
|
|
status;
|
|
|
|
|
|
MagickOffsetType
|
|
|
progress;
|
|
|
|
|
|
MatrixInfo
|
|
|
*canny_cache;
|
|
|
|
|
|
ssize_t
|
|
|
y;
|
|
|
|
|
|
assert(image != (const Image *) NULL);
|
|
|
assert(image->signature == MagickCoreSignature);
|
|
|
if (image->debug != MagickFalse)
|
|
|
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
|
|
|
assert(exception != (ExceptionInfo *) NULL);
|
|
|
assert(exception->signature == MagickCoreSignature);
|
|
|
/*
|
|
|
Filter out noise.
|
|
|
*/
|
|
|
(void) FormatLocaleString(geometry,MagickPathExtent,
|
|
|
"blur:%.20gx%.20g;blur:%.20gx%.20g+90",radius,sigma,radius,sigma);
|
|
|
kernel_info=AcquireKernelInfo(geometry,exception);
|
|
|
if (kernel_info == (KernelInfo *) NULL)
|
|
|
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
|
|
|
edge_image=MorphologyImage(image,ConvolveMorphology,1,kernel_info,exception);
|
|
|
kernel_info=DestroyKernelInfo(kernel_info);
|
|
|
if (edge_image == (Image *) NULL)
|
|
|
return((Image *) NULL);
|
|
|
if (TransformImageColorspace(edge_image,GRAYColorspace,exception) == MagickFalse)
|
|
|
{
|
|
|
edge_image=DestroyImage(edge_image);
|
|
|
return((Image *) NULL);
|
|
|
}
|
|
|
(void) SetImageAlphaChannel(edge_image,OffAlphaChannel,exception);
|
|
|
/*
|
|
|
Find the intensity gradient of the image.
|
|
|
*/
|
|
|
canny_cache=AcquireMatrixInfo(edge_image->columns,edge_image->rows,
|
|
|
sizeof(CannyInfo),exception);
|
|
|
if (canny_cache == (MatrixInfo *) NULL)
|
|
|
{
|
|
|
edge_image=DestroyImage(edge_image);
|
|
|
return((Image *) NULL);
|
|
|
}
|
|
|
status=MagickTrue;
|
|
|
edge_view=AcquireVirtualCacheView(edge_image,exception);
|
|
|
#if defined(MAGICKCORE_OPENMP_SUPPORT)
|
|
|
#pragma omp parallel for schedule(static) shared(status) \
|
|
|
magick_number_threads(edge_image,edge_image,edge_image->rows,1)
|
|
|
#endif
|
|
|
for (y=0; y < (ssize_t) edge_image->rows; y++)
|
|
|
{
|
|
|
const Quantum
|
|
|
*magick_restrict p;
|
|
|
|
|
|
ssize_t
|
|
|
x;
|
|
|
|
|
|
if (status == MagickFalse)
|
|
|
continue;
|
|
|
p=GetCacheViewVirtualPixels(edge_view,0,y,edge_image->columns+1,2,
|
|
|
exception);
|
|
|
if (p == (const Quantum *) NULL)
|
|
|
{
|
|
|
status=MagickFalse;
|
|
|
continue;
|
|
|
}
|
|
|
for (x=0; x < (ssize_t) edge_image->columns; x++)
|
|
|
{
|
|
|
CannyInfo
|
|
|
pixel;
|
|
|
|
|
|
double
|
|
|
dx,
|
|
|
dy;
|
|
|
|
|
|
const Quantum
|
|
|
*magick_restrict kernel_pixels;
|
|
|
|
|
|
ssize_t
|
|
|
v;
|
|
|
|
|
|
static double
|
|
|
Gx[2][2] =
|
|
|
{
|
|
|
{ -1.0, +1.0 },
|
|
|
{ -1.0, +1.0 }
|
|
|
},
|
|
|
Gy[2][2] =
|
|
|
{
|
|
|
{ +1.0, +1.0 },
|
|
|
{ -1.0, -1.0 }
|
|
|
};
|
|
|
|
|
|
(void) memset(&pixel,0,sizeof(pixel));
|
|
|
dx=0.0;
|
|
|
dy=0.0;
|
|
|
kernel_pixels=p;
|
|
|
for (v=0; v < 2; v++)
|
|
|
{
|
|
|
ssize_t
|
|
|
u;
|
|
|
|
|
|
for (u=0; u < 2; u++)
|
|
|
{
|
|
|
double
|
|
|
intensity;
|
|
|
|
|
|
intensity=GetPixelIntensity(edge_image,kernel_pixels+u);
|
|
|
dx+=0.5*Gx[v][u]*intensity;
|
|
|
dy+=0.5*Gy[v][u]*intensity;
|
|
|
}
|
|
|
kernel_pixels+=edge_image->columns+1;
|
|
|
}
|
|
|
pixel.magnitude=hypot(dx,dy);
|
|
|
pixel.orientation=0;
|
|
|
if (fabs(dx) > MagickEpsilon)
|
|
|
{
|
|
|
double
|
|
|
slope;
|
|
|
|
|
|
slope=dy/dx;
|
|
|
if (slope < 0.0)
|
|
|
{
|
|
|
if (slope < -2.41421356237)
|
|
|
pixel.orientation=0;
|
|
|
else
|
|
|
if (slope < -0.414213562373)
|
|
|
pixel.orientation=1;
|
|
|
else
|
|
|
pixel.orientation=2;
|
|
|
}
|
|
|
else
|
|
|
{
|
|
|
if (slope > 2.41421356237)
|
|
|
pixel.orientation=0;
|
|
|
else
|
|
|
if (slope > 0.414213562373)
|
|
|
pixel.orientation=3;
|
|
|
else
|
|
|
pixel.orientation=2;
|
|
|
}
|
|
|
}
|
|
|
if (SetMatrixElement(canny_cache,x,y,&pixel) == MagickFalse)
|
|
|
continue;
|
|
|
p+=GetPixelChannels(edge_image);
|
|
|
}
|
|
|
}
|
|
|
edge_view=DestroyCacheView(edge_view);
|
|
|
/*
|
|
|
Non-maxima suppression, remove pixels that are not considered to be part
|
|
|
of an edge.
|
|
|
*/
|
|
|
progress=0;
|
|
|
(void) GetMatrixElement(canny_cache,0,0,&element);
|
|
|
max=element.intensity;
|
|
|
min=element.intensity;
|
|
|
edge_view=AcquireAuthenticCacheView(edge_image,exception);
|
|
|
#if defined(MAGICKCORE_OPENMP_SUPPORT)
|
|
|
#pragma omp parallel for schedule(static) shared(status) \
|
|
|
magick_number_threads(edge_image,edge_image,edge_image->rows,1)
|
|
|
#endif
|
|
|
for (y=0; y < (ssize_t) edge_image->rows; y++)
|
|
|
{
|
|
|
Quantum
|
|
|
*magick_restrict q;
|
|
|
|
|
|
ssize_t
|
|
|
x;
|
|
|
|
|
|
if (status == MagickFalse)
|
|
|
continue;
|
|
|
q=GetCacheViewAuthenticPixels(edge_view,0,y,edge_image->columns,1,
|
|
|
exception);
|
|
|
if (q == (Quantum *) NULL)
|
|
|
{
|
|
|
status=MagickFalse;
|
|
|
continue;
|
|
|
}
|
|
|
for (x=0; x < (ssize_t) edge_image->columns; x++)
|
|
|
{
|
|
|
CannyInfo
|
|
|
alpha_pixel,
|
|
|
beta_pixel,
|
|
|
pixel;
|
|
|
|
|
|
(void) GetMatrixElement(canny_cache,x,y,&pixel);
|
|
|
switch (pixel.orientation)
|
|
|
{
|
|
|
case 0:
|
|
|
default:
|
|
|
{
|
|
|
/*
|
|
|
0 degrees, north and south.
|
|
|
*/
|
|
|
(void) GetMatrixElement(canny_cache,x,y-1,&alpha_pixel);
|
|
|
(void) GetMatrixElement(canny_cache,x,y+1,&beta_pixel);
|
|
|
break;
|
|
|
}
|
|
|
case 1:
|
|
|
{
|
|
|
/*
|
|
|
45 degrees, northwest and southeast.
|
|
|
*/
|
|
|
(void) GetMatrixElement(canny_cache,x-1,y-1,&alpha_pixel);
|
|
|
(void) GetMatrixElement(canny_cache,x+1,y+1,&beta_pixel);
|
|
|
break;
|
|
|
}
|
|
|
case 2:
|
|
|
{
|
|
|
/*
|
|
|
90 degrees, east and west.
|
|
|
*/
|
|
|
(void) GetMatrixElement(canny_cache,x-1,y,&alpha_pixel);
|
|
|
(void) GetMatrixElement(canny_cache,x+1,y,&beta_pixel);
|
|
|
break;
|
|
|
}
|
|
|
case 3:
|
|
|
{
|
|
|
/*
|
|
|
135 degrees, northeast and southwest.
|
|
|
*/
|
|
|
(void) GetMatrixElement(canny_cache,x+1,y-1,&beta_pixel);
|
|
|
(void) GetMatrixElement(canny_cache,x-1,y+1,&alpha_pixel);
|
|
|
break;
|
|
|
}
|
|
|
}
|
|
|
pixel.intensity=pixel.magnitude;
|
|
|
if ((pixel.magnitude < alpha_pixel.magnitude) ||
|
|
|
(pixel.magnitude < beta_pixel.magnitude))
|
|
|
pixel.intensity=0;
|
|
|
(void) SetMatrixElement(canny_cache,x,y,&pixel);
|
|
|
#if defined(MAGICKCORE_OPENMP_SUPPORT)
|
|
|
#pragma omp critical (MagickCore_CannyEdgeImage)
|
|
|
#endif
|
|
|
{
|
|
|
if (pixel.intensity < min)
|
|
|
min=pixel.intensity;
|
|
|
if (pixel.intensity > max)
|
|
|
max=pixel.intensity;
|
|
|
}
|
|
|
*q=0;
|
|
|
q+=GetPixelChannels(edge_image);
|
|
|
}
|
|
|
if (SyncCacheViewAuthenticPixels(edge_view,exception) == MagickFalse)
|
|
|
status=MagickFalse;
|
|
|
}
|
|
|
edge_view=DestroyCacheView(edge_view);
|
|
|
/*
|
|
|
Estimate hysteresis threshold.
|
|
|
*/
|
|
|
lower_threshold=lower_percent*(max-min)+min;
|
|
|
upper_threshold=upper_percent*(max-min)+min;
|
|
|
/*
|
|
|
Hysteresis threshold.
|
|
|
*/
|
|
|
edge_view=AcquireAuthenticCacheView(edge_image,exception);
|
|
|
for (y=0; y < (ssize_t) edge_image->rows; y++)
|
|
|
{
|
|
|
ssize_t
|
|
|
x;
|
|
|
|
|
|
if (status == MagickFalse)
|
|
|
continue;
|
|
|
for (x=0; x < (ssize_t) edge_image->columns; x++)
|
|
|
{
|
|
|
CannyInfo
|
|
|
pixel;
|
|
|
|
|
|
const Quantum
|
|
|
*magick_restrict p;
|
|
|
|
|
|
/*
|
|
|
Edge if pixel gradient higher than upper threshold.
|
|
|
*/
|
|
|
p=GetCacheViewVirtualPixels(edge_view,x,y,1,1,exception);
|
|
|
if (p == (const Quantum *) NULL)
|
|
|
continue;
|
|
|
status=GetMatrixElement(canny_cache,x,y,&pixel);
|
|
|
if (status == MagickFalse)
|
|
|
continue;
|
|
|
if ((GetPixelIntensity(edge_image,p) == 0.0) &&
|
|
|
(pixel.intensity >= upper_threshold))
|
|
|
status=TraceEdges(edge_image,edge_view,canny_cache,x,y,lower_threshold,
|
|
|
exception);
|
|
|
}
|
|
|
if (image->progress_monitor != (MagickProgressMonitor) NULL)
|
|
|
{
|
|
|
MagickBooleanType
|
|
|
proceed;
|
|
|
|
|
|
#if defined(MAGICKCORE_OPENMP_SUPPORT)
|
|
|
#pragma omp atomic
|
|
|
#endif
|
|
|
progress++;
|
|
|
proceed=SetImageProgress(image,CannyEdgeImageTag,progress,image->rows);
|
|
|
if (proceed == MagickFalse)
|
|
|
status=MagickFalse;
|
|
|
}
|
|
|
}
|
|
|
edge_view=DestroyCacheView(edge_view);
|
|
|
/*
|
|
|
Free resources.
|
|
|
*/
|
|
|
canny_cache=DestroyMatrixInfo(canny_cache);
|
|
|
return(edge_image);
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
% %
|
|
|
% %
|
|
|
% %
|
|
|
% G e t I m a g e F e a t u r e s %
|
|
|
% %
|
|
|
% %
|
|
|
% %
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
%
|
|
|
% GetImageFeatures() returns features for each channel in the image in
|
|
|
% each of four directions (horizontal, vertical, left and right diagonals)
|
|
|
% for the specified distance. The features include the angular second
|
|
|
% moment, contrast, correlation, sum of squares: variance, inverse difference
|
|
|
% moment, sum average, sum varience, sum entropy, entropy, difference variance,
|
|
|
% difference entropy, information measures of correlation 1, information
|
|
|
% measures of correlation 2, and maximum correlation coefficient. You can
|
|
|
% access the red channel contrast, for example, like this:
|
|
|
%
|
|
|
% channel_features=GetImageFeatures(image,1,exception);
|
|
|
% contrast=channel_features[RedPixelChannel].contrast[0];
|
|
|
%
|
|
|
% Use MagickRelinquishMemory() to free the features buffer.
|
|
|
%
|
|
|
% The format of the GetImageFeatures method is:
|
|
|
%
|
|
|
% ChannelFeatures *GetImageFeatures(const Image *image,
|
|
|
% const size_t distance,ExceptionInfo *exception)
|
|
|
%
|
|
|
% A description of each parameter follows:
|
|
|
%
|
|
|
% o image: the image.
|
|
|
%
|
|
|
% o distance: the distance.
|
|
|
%
|
|
|
% o exception: return any errors or warnings in this structure.
|
|
|
%
|
|
|
*/
|
|
|
|
|
|
static inline double MagickLog10(const double x)
|
|
|
{
|
|
|
#define Log10Epsilon (1.0e-11)
|
|
|
|
|
|
if (fabs(x) < Log10Epsilon)
|
|
|
return(log10(Log10Epsilon));
|
|
|
return(log10(fabs(x)));
|
|
|
}
|
|
|
|
|
|
MagickExport ChannelFeatures *GetImageFeatures(const Image *image,
|
|
|
const size_t distance,ExceptionInfo *exception)
|
|
|
{
|
|
|
typedef struct _ChannelStatistics
|
|
|
{
|
|
|
PixelInfo
|
|
|
direction[4]; /* horizontal, vertical, left and right diagonals */
|
|
|
} ChannelStatistics;
|
|
|
|
|
|
CacheView
|
|
|
*image_view;
|
|
|
|
|
|
ChannelFeatures
|
|
|
*channel_features;
|
|
|
|
|
|
ChannelStatistics
|
|
|
**cooccurrence,
|
|
|
correlation,
|
|
|
*density_x,
|
|
|
*density_xy,
|
|
|
*density_y,
|
|
|
entropy_x,
|
|
|
entropy_xy,
|
|
|
entropy_xy1,
|
|
|
entropy_xy2,
|
|
|
entropy_y,
|
|
|
mean,
|
|
|
**Q,
|
|
|
*sum,
|
|
|
sum_squares,
|
|
|
variance;
|
|
|
|
|
|
PixelPacket
|
|
|
gray,
|
|
|
*grays;
|
|
|
|
|
|
MagickBooleanType
|
|
|
status;
|
|
|
|
|
|
ssize_t
|
|
|
i,
|
|
|
r;
|
|
|
|
|
|
size_t
|
|
|
length;
|
|
|
|
|
|
unsigned int
|
|
|
number_grays;
|
|
|
|
|
|
assert(image != (Image *) NULL);
|
|
|
assert(image->signature == MagickCoreSignature);
|
|
|
if (image->debug != MagickFalse)
|
|
|
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
|
|
|
if ((image->columns < (distance+1)) || (image->rows < (distance+1)))
|
|
|
return((ChannelFeatures *) NULL);
|
|
|
length=MaxPixelChannels+1UL;
|
|
|
channel_features=(ChannelFeatures *) AcquireQuantumMemory(length,
|
|
|
sizeof(*channel_features));
|
|
|
if (channel_features == (ChannelFeatures *) NULL)
|
|
|
ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed");
|
|
|
(void) memset(channel_features,0,length*
|
|
|
sizeof(*channel_features));
|
|
|
/*
|
|
|
Form grays.
|
|
|
*/
|
|
|
grays=(PixelPacket *) AcquireQuantumMemory(MaxMap+1UL,sizeof(*grays));
|
|
|
if (grays == (PixelPacket *) NULL)
|
|
|
{
|
|
|
channel_features=(ChannelFeatures *) RelinquishMagickMemory(
|
|
|
channel_features);
|
|
|
(void) ThrowMagickException(exception,GetMagickModule(),
|
|
|
ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
|
|
|
return(channel_features);
|
|
|
}
|
|
|
for (i=0; i <= (ssize_t) MaxMap; i++)
|
|
|
{
|
|
|
grays[i].red=(~0U);
|
|
|
grays[i].green=(~0U);
|
|
|
grays[i].blue=(~0U);
|
|
|
grays[i].alpha=(~0U);
|
|
|
grays[i].black=(~0U);
|
|
|
}
|
|
|
status=MagickTrue;
|
|
|
image_view=AcquireVirtualCacheView(image,exception);
|
|
|
#if defined(MAGICKCORE_OPENMP_SUPPORT)
|
|
|
#pragma omp parallel for schedule(static) shared(status) \
|
|
|
magick_number_threads(image,image,image->rows,1)
|
|
|
#endif
|
|
|
for (r=0; r < (ssize_t) image->rows; r++)
|
|
|
{
|
|
|
const Quantum
|
|
|
*magick_restrict p;
|
|
|
|
|
|
ssize_t
|
|
|
x;
|
|
|
|
|
|
if (status == MagickFalse)
|
|
|
continue;
|
|
|
p=GetCacheViewVirtualPixels(image_view,0,r,image->columns,1,exception);
|
|
|
if (p == (const Quantum *) NULL)
|
|
|
{
|
|
|
status=MagickFalse;
|
|
|
continue;
|
|
|
}
|
|
|
for (x=0; x < (ssize_t) image->columns; x++)
|
|
|
{
|
|
|
grays[ScaleQuantumToMap(GetPixelRed(image,p))].red=
|
|
|
ScaleQuantumToMap(GetPixelRed(image,p));
|
|
|
grays[ScaleQuantumToMap(GetPixelGreen(image,p))].green=
|
|
|
ScaleQuantumToMap(GetPixelGreen(image,p));
|
|
|
grays[ScaleQuantumToMap(GetPixelBlue(image,p))].blue=
|
|
|
ScaleQuantumToMap(GetPixelBlue(image,p));
|
|
|
if (image->colorspace == CMYKColorspace)
|
|
|
grays[ScaleQuantumToMap(GetPixelBlack(image,p))].black=
|
|
|
ScaleQuantumToMap(GetPixelBlack(image,p));
|
|
|
if (image->alpha_trait != UndefinedPixelTrait)
|
|
|
grays[ScaleQuantumToMap(GetPixelAlpha(image,p))].alpha=
|
|
|
ScaleQuantumToMap(GetPixelAlpha(image,p));
|
|
|
p+=GetPixelChannels(image);
|
|
|
}
|
|
|
}
|
|
|
image_view=DestroyCacheView(image_view);
|
|
|
if (status == MagickFalse)
|
|
|
{
|
|
|
grays=(PixelPacket *) RelinquishMagickMemory(grays);
|
|
|
channel_features=(ChannelFeatures *) RelinquishMagickMemory(
|
|
|
channel_features);
|
|
|
return(channel_features);
|
|
|
}
|
|
|
(void) memset(&gray,0,sizeof(gray));
|
|
|
for (i=0; i <= (ssize_t) MaxMap; i++)
|
|
|
{
|
|
|
if (grays[i].red != ~0U)
|
|
|
grays[gray.red++].red=grays[i].red;
|
|
|
if (grays[i].green != ~0U)
|
|
|
grays[gray.green++].green=grays[i].green;
|
|
|
if (grays[i].blue != ~0U)
|
|
|
grays[gray.blue++].blue=grays[i].blue;
|
|
|
if (image->colorspace == CMYKColorspace)
|
|
|
if (grays[i].black != ~0U)
|
|
|
grays[gray.black++].black=grays[i].black;
|
|
|
if (image->alpha_trait != UndefinedPixelTrait)
|
|
|
if (grays[i].alpha != ~0U)
|
|
|
grays[gray.alpha++].alpha=grays[i].alpha;
|
|
|
}
|
|
|
/*
|
|
|
Allocate spatial dependence matrix.
|
|
|
*/
|
|
|
number_grays=gray.red;
|
|
|
if (gray.green > number_grays)
|
|
|
number_grays=gray.green;
|
|
|
if (gray.blue > number_grays)
|
|
|
number_grays=gray.blue;
|
|
|
if (image->colorspace == CMYKColorspace)
|
|
|
if (gray.black > number_grays)
|
|
|
number_grays=gray.black;
|
|
|
if (image->alpha_trait != UndefinedPixelTrait)
|
|
|
if (gray.alpha > number_grays)
|
|
|
number_grays=gray.alpha;
|
|
|
cooccurrence=(ChannelStatistics **) AcquireQuantumMemory(number_grays,
|
|
|
sizeof(*cooccurrence));
|
|
|
density_x=(ChannelStatistics *) AcquireQuantumMemory(number_grays+1,
|
|
|
2*sizeof(*density_x));
|
|
|
density_xy=(ChannelStatistics *) AcquireQuantumMemory(number_grays+1,
|
|
|
2*sizeof(*density_xy));
|
|
|
density_y=(ChannelStatistics *) AcquireQuantumMemory(number_grays+1,
|
|
|
2*sizeof(*density_y));
|
|
|
Q=(ChannelStatistics **) AcquireQuantumMemory(number_grays,sizeof(*Q));
|
|
|
sum=(ChannelStatistics *) AcquireQuantumMemory(number_grays,sizeof(*sum));
|
|
|
if ((cooccurrence == (ChannelStatistics **) NULL) ||
|
|
|
(density_x == (ChannelStatistics *) NULL) ||
|
|
|
(density_xy == (ChannelStatistics *) NULL) ||
|
|
|
(density_y == (ChannelStatistics *) NULL) ||
|
|
|
(Q == (ChannelStatistics **) NULL) ||
|
|
|
(sum == (ChannelStatistics *) NULL))
|
|
|
{
|
|
|
if (Q != (ChannelStatistics **) NULL)
|
|
|
{
|
|
|
for (i=0; i < (ssize_t) number_grays; i++)
|
|
|
Q[i]=(ChannelStatistics *) RelinquishMagickMemory(Q[i]);
|
|
|
Q=(ChannelStatistics **) RelinquishMagickMemory(Q);
|
|
|
}
|
|
|
if (sum != (ChannelStatistics *) NULL)
|
|
|
sum=(ChannelStatistics *) RelinquishMagickMemory(sum);
|
|
|
if (density_y != (ChannelStatistics *) NULL)
|
|
|
density_y=(ChannelStatistics *) RelinquishMagickMemory(density_y);
|
|
|
if (density_xy != (ChannelStatistics *) NULL)
|
|
|
density_xy=(ChannelStatistics *) RelinquishMagickMemory(density_xy);
|
|
|
if (density_x != (ChannelStatistics *) NULL)
|
|
|
density_x=(ChannelStatistics *) RelinquishMagickMemory(density_x);
|
|
|
if (cooccurrence != (ChannelStatistics **) NULL)
|
|
|
{
|
|
|
for (i=0; i < (ssize_t) number_grays; i++)
|
|
|
cooccurrence[i]=(ChannelStatistics *)
|
|
|
RelinquishMagickMemory(cooccurrence[i]);
|
|
|
cooccurrence=(ChannelStatistics **) RelinquishMagickMemory(
|
|
|
cooccurrence);
|
|
|
}
|
|
|
grays=(PixelPacket *) RelinquishMagickMemory(grays);
|
|
|
channel_features=(ChannelFeatures *) RelinquishMagickMemory(
|
|
|
channel_features);
|
|
|
(void) ThrowMagickException(exception,GetMagickModule(),
|
|
|
ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
|
|
|
return(channel_features);
|
|
|
}
|
|
|
(void) memset(&correlation,0,sizeof(correlation));
|
|
|
(void) memset(density_x,0,2*(number_grays+1)*sizeof(*density_x));
|
|
|
(void) memset(density_xy,0,2*(number_grays+1)*sizeof(*density_xy));
|
|
|
(void) memset(density_y,0,2*(number_grays+1)*sizeof(*density_y));
|
|
|
(void) memset(&mean,0,sizeof(mean));
|
|
|
(void) memset(sum,0,number_grays*sizeof(*sum));
|
|
|
(void) memset(&sum_squares,0,sizeof(sum_squares));
|
|
|
(void) memset(density_xy,0,2*number_grays*sizeof(*density_xy));
|
|
|
(void) memset(&entropy_x,0,sizeof(entropy_x));
|
|
|
(void) memset(&entropy_xy,0,sizeof(entropy_xy));
|
|
|
(void) memset(&entropy_xy1,0,sizeof(entropy_xy1));
|
|
|
(void) memset(&entropy_xy2,0,sizeof(entropy_xy2));
|
|
|
(void) memset(&entropy_y,0,sizeof(entropy_y));
|
|
|
(void) memset(&variance,0,sizeof(variance));
|
|
|
for (i=0; i < (ssize_t) number_grays; i++)
|
|
|
{
|
|
|
cooccurrence[i]=(ChannelStatistics *) AcquireQuantumMemory(number_grays,
|
|
|
sizeof(**cooccurrence));
|
|
|
Q[i]=(ChannelStatistics *) AcquireQuantumMemory(number_grays,sizeof(**Q));
|
|
|
if ((cooccurrence[i] == (ChannelStatistics *) NULL) ||
|
|
|
(Q[i] == (ChannelStatistics *) NULL))
|
|
|
break;
|
|
|
(void) memset(cooccurrence[i],0,number_grays*
|
|
|
sizeof(**cooccurrence));
|
|
|
(void) memset(Q[i],0,number_grays*sizeof(**Q));
|
|
|
}
|
|
|
if (i < (ssize_t) number_grays)
|
|
|
{
|
|
|
for (i--; i >= 0; i--)
|
|
|
{
|
|
|
if (Q[i] != (ChannelStatistics *) NULL)
|
|
|
Q[i]=(ChannelStatistics *) RelinquishMagickMemory(Q[i]);
|
|
|
if (cooccurrence[i] != (ChannelStatistics *) NULL)
|
|
|
cooccurrence[i]=(ChannelStatistics *)
|
|
|
RelinquishMagickMemory(cooccurrence[i]);
|
|
|
}
|
|
|
Q=(ChannelStatistics **) RelinquishMagickMemory(Q);
|
|
|
cooccurrence=(ChannelStatistics **) RelinquishMagickMemory(cooccurrence);
|
|
|
sum=(ChannelStatistics *) RelinquishMagickMemory(sum);
|
|
|
density_y=(ChannelStatistics *) RelinquishMagickMemory(density_y);
|
|
|
density_xy=(ChannelStatistics *) RelinquishMagickMemory(density_xy);
|
|
|
density_x=(ChannelStatistics *) RelinquishMagickMemory(density_x);
|
|
|
grays=(PixelPacket *) RelinquishMagickMemory(grays);
|
|
|
channel_features=(ChannelFeatures *) RelinquishMagickMemory(
|
|
|
channel_features);
|
|
|
(void) ThrowMagickException(exception,GetMagickModule(),
|
|
|
ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
|
|
|
return(channel_features);
|
|
|
}
|
|
|
/*
|
|
|
Initialize spatial dependence matrix.
|
|
|
*/
|
|
|
status=MagickTrue;
|
|
|
image_view=AcquireVirtualCacheView(image,exception);
|
|
|
for (r=0; r < (ssize_t) image->rows; r++)
|
|
|
{
|
|
|
const Quantum
|
|
|
*magick_restrict p;
|
|
|
|
|
|
ssize_t
|
|
|
x;
|
|
|
|
|
|
ssize_t
|
|
|
offset,
|
|
|
u,
|
|
|
v;
|
|
|
|
|
|
if (status == MagickFalse)
|
|
|
continue;
|
|
|
p=GetCacheViewVirtualPixels(image_view,-(ssize_t) distance,r,image->columns+
|
|
|
2*distance,distance+2,exception);
|
|
|
if (p == (const Quantum *) NULL)
|
|
|
{
|
|
|
status=MagickFalse;
|
|
|
continue;
|
|
|
}
|
|
|
p+=distance*GetPixelChannels(image);;
|
|
|
for (x=0; x < (ssize_t) image->columns; x++)
|
|
|
{
|
|
|
for (i=0; i < 4; i++)
|
|
|
{
|
|
|
switch (i)
|
|
|
{
|
|
|
case 0:
|
|
|
default:
|
|
|
{
|
|
|
/*
|
|
|
Horizontal adjacency.
|
|
|
*/
|
|
|
offset=(ssize_t) distance;
|
|
|
break;
|
|
|
}
|
|
|
case 1:
|
|
|
{
|
|
|
/*
|
|
|
Vertical adjacency.
|
|
|
*/
|
|
|
offset=(ssize_t) (image->columns+2*distance);
|
|
|
break;
|
|
|
}
|
|
|
case 2:
|
|
|
{
|
|
|
/*
|
|
|
Right diagonal adjacency.
|
|
|
*/
|
|
|
offset=(ssize_t) ((image->columns+2*distance)-distance);
|
|
|
break;
|
|
|
}
|
|
|
case 3:
|
|
|
{
|
|
|
/*
|
|
|
Left diagonal adjacency.
|
|
|
*/
|
|
|
offset=(ssize_t) ((image->columns+2*distance)+distance);
|
|
|
break;
|
|
|
}
|
|
|
}
|
|
|
u=0;
|
|
|
v=0;
|
|
|
while (grays[u].red != ScaleQuantumToMap(GetPixelRed(image,p)))
|
|
|
u++;
|
|
|
while (grays[v].red != ScaleQuantumToMap(GetPixelRed(image,p+offset*GetPixelChannels(image))))
|
|
|
v++;
|
|
|
cooccurrence[u][v].direction[i].red++;
|
|
|
cooccurrence[v][u].direction[i].red++;
|
|
|
u=0;
|
|
|
v=0;
|
|
|
while (grays[u].green != ScaleQuantumToMap(GetPixelGreen(image,p)))
|
|
|
u++;
|
|
|
while (grays[v].green != ScaleQuantumToMap(GetPixelGreen(image,p+offset*GetPixelChannels(image))))
|
|
|
v++;
|
|
|
cooccurrence[u][v].direction[i].green++;
|
|
|
cooccurrence[v][u].direction[i].green++;
|
|
|
u=0;
|
|
|
v=0;
|
|
|
while (grays[u].blue != ScaleQuantumToMap(GetPixelBlue(image,p)))
|
|
|
u++;
|
|
|
while (grays[v].blue != ScaleQuantumToMap(GetPixelBlue(image,p+offset*GetPixelChannels(image))))
|
|
|
v++;
|
|
|
cooccurrence[u][v].direction[i].blue++;
|
|
|
cooccurrence[v][u].direction[i].blue++;
|
|
|
if (image->colorspace == CMYKColorspace)
|
|
|
{
|
|
|
u=0;
|
|
|
v=0;
|
|
|
while (grays[u].black != ScaleQuantumToMap(GetPixelBlack(image,p)))
|
|
|
u++;
|
|
|
while (grays[v].black != ScaleQuantumToMap(GetPixelBlack(image,p+offset*GetPixelChannels(image))))
|
|
|
v++;
|
|
|
cooccurrence[u][v].direction[i].black++;
|
|
|
cooccurrence[v][u].direction[i].black++;
|
|
|
}
|
|
|
if (image->alpha_trait != UndefinedPixelTrait)
|
|
|
{
|
|
|
u=0;
|
|
|
v=0;
|
|
|
while (grays[u].alpha != ScaleQuantumToMap(GetPixelAlpha(image,p)))
|
|
|
u++;
|
|
|
while (grays[v].alpha != ScaleQuantumToMap(GetPixelAlpha(image,p+offset*GetPixelChannels(image))))
|
|
|
v++;
|
|
|
cooccurrence[u][v].direction[i].alpha++;
|
|
|
cooccurrence[v][u].direction[i].alpha++;
|
|
|
}
|
|
|
}
|
|
|
p+=GetPixelChannels(image);
|
|
|
}
|
|
|
}
|
|
|
grays=(PixelPacket *) RelinquishMagickMemory(grays);
|
|
|
image_view=DestroyCacheView(image_view);
|
|
|
if (status == MagickFalse)
|
|
|
{
|
|
|
for (i=0; i < (ssize_t) number_grays; i++)
|
|
|
cooccurrence[i]=(ChannelStatistics *)
|
|
|
RelinquishMagickMemory(cooccurrence[i]);
|
|
|
cooccurrence=(ChannelStatistics **) RelinquishMagickMemory(cooccurrence);
|
|
|
channel_features=(ChannelFeatures *) RelinquishMagickMemory(
|
|
|
channel_features);
|
|
|
(void) ThrowMagickException(exception,GetMagickModule(),
|
|
|
ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
|
|
|
return(channel_features);
|
|
|
}
|
|
|
/*
|
|
|
Normalize spatial dependence matrix.
|
|
|
*/
|
|
|
for (i=0; i < 4; i++)
|
|
|
{
|
|
|
double
|
|
|
normalize;
|
|
|
|
|
|
ssize_t
|
|
|
y;
|
|
|
|
|
|
switch (i)
|
|
|
{
|
|
|
case 0:
|
|
|
default:
|
|
|
{
|
|
|
/*
|
|
|
Horizontal adjacency.
|
|
|
*/
|
|
|
normalize=2.0*image->rows*(image->columns-distance);
|
|
|
break;
|
|
|
}
|
|
|
case 1:
|
|
|
{
|
|
|
/*
|
|
|
Vertical adjacency.
|
|
|
*/
|
|
|
normalize=2.0*(image->rows-distance)*image->columns;
|
|
|
break;
|
|
|
}
|
|
|
case 2:
|
|
|
{
|
|
|
/*
|
|
|
Right diagonal adjacency.
|
|
|
*/
|
|
|
normalize=2.0*(image->rows-distance)*(image->columns-distance);
|
|
|
break;
|
|
|
}
|
|
|
case 3:
|
|
|
{
|
|
|
/*
|
|
|
Left diagonal adjacency.
|
|
|
*/
|
|
|
normalize=2.0*(image->rows-distance)*(image->columns-distance);
|
|
|
break;
|
|
|
}
|
|
|
}
|
|
|
normalize=PerceptibleReciprocal(normalize);
|
|
|
for (y=0; y < (ssize_t) number_grays; y++)
|
|
|
{
|
|
|
ssize_t
|
|
|
x;
|
|
|
|
|
|
for (x=0; x < (ssize_t) number_grays; x++)
|
|
|
{
|
|
|
cooccurrence[x][y].direction[i].red*=normalize;
|
|
|
cooccurrence[x][y].direction[i].green*=normalize;
|
|
|
cooccurrence[x][y].direction[i].blue*=normalize;
|
|
|
if (image->colorspace == CMYKColorspace)
|
|
|
cooccurrence[x][y].direction[i].black*=normalize;
|
|
|
if (image->alpha_trait != UndefinedPixelTrait)
|
|
|
cooccurrence[x][y].direction[i].alpha*=normalize;
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
/*
|
|
|
Compute texture features.
|
|
|
*/
|
|
|
#if defined(MAGICKCORE_OPENMP_SUPPORT)
|
|
|
#pragma omp parallel for schedule(static) shared(status) \
|
|
|
magick_number_threads(image,image,number_grays,1)
|
|
|
#endif
|
|
|
for (i=0; i < 4; i++)
|
|
|
{
|
|
|
ssize_t
|
|
|
y;
|
|
|
|
|
|
for (y=0; y < (ssize_t) number_grays; y++)
|
|
|
{
|
|
|
ssize_t
|
|
|
x;
|
|
|
|
|
|
for (x=0; x < (ssize_t) number_grays; x++)
|
|
|
{
|
|
|
/*
|
|
|
Angular second moment: measure of homogeneity of the image.
|
|
|
*/
|
|
|
channel_features[RedPixelChannel].angular_second_moment[i]+=
|
|
|
cooccurrence[x][y].direction[i].red*
|
|
|
cooccurrence[x][y].direction[i].red;
|
|
|
channel_features[GreenPixelChannel].angular_second_moment[i]+=
|
|
|
cooccurrence[x][y].direction[i].green*
|
|
|
cooccurrence[x][y].direction[i].green;
|
|
|
channel_features[BluePixelChannel].angular_second_moment[i]+=
|
|
|
cooccurrence[x][y].direction[i].blue*
|
|
|
cooccurrence[x][y].direction[i].blue;
|
|
|
if (image->colorspace == CMYKColorspace)
|
|
|
channel_features[BlackPixelChannel].angular_second_moment[i]+=
|
|
|
cooccurrence[x][y].direction[i].black*
|
|
|
cooccurrence[x][y].direction[i].black;
|
|
|
if (image->alpha_trait != UndefinedPixelTrait)
|
|
|
channel_features[AlphaPixelChannel].angular_second_moment[i]+=
|
|
|
cooccurrence[x][y].direction[i].alpha*
|
|
|
cooccurrence[x][y].direction[i].alpha;
|
|
|
/*
|
|
|
Correlation: measure of linear-dependencies in the image.
|
|
|
*/
|
|
|
sum[y].direction[i].red+=cooccurrence[x][y].direction[i].red;
|
|
|
sum[y].direction[i].green+=cooccurrence[x][y].direction[i].green;
|
|
|
sum[y].direction[i].blue+=cooccurrence[x][y].direction[i].blue;
|
|
|
if (image->colorspace == CMYKColorspace)
|
|
|
sum[y].direction[i].black+=cooccurrence[x][y].direction[i].black;
|
|
|
if (image->alpha_trait != UndefinedPixelTrait)
|
|
|
sum[y].direction[i].alpha+=cooccurrence[x][y].direction[i].alpha;
|
|
|
correlation.direction[i].red+=x*y*cooccurrence[x][y].direction[i].red;
|
|
|
correlation.direction[i].green+=x*y*
|
|
|
cooccurrence[x][y].direction[i].green;
|
|
|
correlation.direction[i].blue+=x*y*
|
|
|
cooccurrence[x][y].direction[i].blue;
|
|
|
if (image->colorspace == CMYKColorspace)
|
|
|
correlation.direction[i].black+=x*y*
|
|
|
cooccurrence[x][y].direction[i].black;
|
|
|
if (image->alpha_trait != UndefinedPixelTrait)
|
|
|
correlation.direction[i].alpha+=x*y*
|
|
|
cooccurrence[x][y].direction[i].alpha;
|
|
|
/*
|
|
|
Inverse Difference Moment.
|
|
|
*/
|
|
|
channel_features[RedPixelChannel].inverse_difference_moment[i]+=
|
|
|
cooccurrence[x][y].direction[i].red/((y-x)*(y-x)+1);
|
|
|
channel_features[GreenPixelChannel].inverse_difference_moment[i]+=
|
|
|
cooccurrence[x][y].direction[i].green/((y-x)*(y-x)+1);
|
|
|
channel_features[BluePixelChannel].inverse_difference_moment[i]+=
|
|
|
cooccurrence[x][y].direction[i].blue/((y-x)*(y-x)+1);
|
|
|
if (image->colorspace == CMYKColorspace)
|
|
|
channel_features[BlackPixelChannel].inverse_difference_moment[i]+=
|
|
|
cooccurrence[x][y].direction[i].black/((y-x)*(y-x)+1);
|
|
|
if (image->alpha_trait != UndefinedPixelTrait)
|
|
|
channel_features[AlphaPixelChannel].inverse_difference_moment[i]+=
|
|
|
cooccurrence[x][y].direction[i].alpha/((y-x)*(y-x)+1);
|
|
|
/*
|
|
|
Sum average.
|
|
|
*/
|
|
|
density_xy[y+x+2].direction[i].red+=
|
|
|
cooccurrence[x][y].direction[i].red;
|
|
|
density_xy[y+x+2].direction[i].green+=
|
|
|
cooccurrence[x][y].direction[i].green;
|
|
|
density_xy[y+x+2].direction[i].blue+=
|
|
|
cooccurrence[x][y].direction[i].blue;
|
|
|
if (image->colorspace == CMYKColorspace)
|
|
|
density_xy[y+x+2].direction[i].black+=
|
|
|
cooccurrence[x][y].direction[i].black;
|
|
|
if (image->alpha_trait != UndefinedPixelTrait)
|
|
|
density_xy[y+x+2].direction[i].alpha+=
|
|
|
cooccurrence[x][y].direction[i].alpha;
|
|
|
/*
|
|
|
Entropy.
|
|
|
*/
|
|
|
channel_features[RedPixelChannel].entropy[i]-=
|
|
|
cooccurrence[x][y].direction[i].red*
|
|
|
MagickLog10(cooccurrence[x][y].direction[i].red);
|
|
|
channel_features[GreenPixelChannel].entropy[i]-=
|
|
|
cooccurrence[x][y].direction[i].green*
|
|
|
MagickLog10(cooccurrence[x][y].direction[i].green);
|
|
|
channel_features[BluePixelChannel].entropy[i]-=
|
|
|
cooccurrence[x][y].direction[i].blue*
|
|
|
MagickLog10(cooccurrence[x][y].direction[i].blue);
|
|
|
if (image->colorspace == CMYKColorspace)
|
|
|
channel_features[BlackPixelChannel].entropy[i]-=
|
|
|
cooccurrence[x][y].direction[i].black*
|
|
|
MagickLog10(cooccurrence[x][y].direction[i].black);
|
|
|
if (image->alpha_trait != UndefinedPixelTrait)
|
|
|
channel_features[AlphaPixelChannel].entropy[i]-=
|
|
|
cooccurrence[x][y].direction[i].alpha*
|
|
|
MagickLog10(cooccurrence[x][y].direction[i].alpha);
|
|
|
/*
|
|
|
Information Measures of Correlation.
|
|
|
*/
|
|
|
density_x[x].direction[i].red+=cooccurrence[x][y].direction[i].red;
|
|
|
density_x[x].direction[i].green+=cooccurrence[x][y].direction[i].green;
|
|
|
density_x[x].direction[i].blue+=cooccurrence[x][y].direction[i].blue;
|
|
|
if (image->alpha_trait != UndefinedPixelTrait)
|
|
|
density_x[x].direction[i].alpha+=
|
|
|
cooccurrence[x][y].direction[i].alpha;
|
|
|
if (image->colorspace == CMYKColorspace)
|
|
|
density_x[x].direction[i].black+=
|
|
|
cooccurrence[x][y].direction[i].black;
|
|
|
density_y[y].direction[i].red+=cooccurrence[x][y].direction[i].red;
|
|
|
density_y[y].direction[i].green+=cooccurrence[x][y].direction[i].green;
|
|
|
density_y[y].direction[i].blue+=cooccurrence[x][y].direction[i].blue;
|
|
|
if (image->colorspace == CMYKColorspace)
|
|
|
density_y[y].direction[i].black+=
|
|
|
cooccurrence[x][y].direction[i].black;
|
|
|
if (image->alpha_trait != UndefinedPixelTrait)
|
|
|
density_y[y].direction[i].alpha+=
|
|
|
cooccurrence[x][y].direction[i].alpha;
|
|
|
}
|
|
|
mean.direction[i].red+=y*sum[y].direction[i].red;
|
|
|
sum_squares.direction[i].red+=y*y*sum[y].direction[i].red;
|
|
|
mean.direction[i].green+=y*sum[y].direction[i].green;
|
|
|
sum_squares.direction[i].green+=y*y*sum[y].direction[i].green;
|
|
|
mean.direction[i].blue+=y*sum[y].direction[i].blue;
|
|
|
sum_squares.direction[i].blue+=y*y*sum[y].direction[i].blue;
|
|
|
if (image->colorspace == CMYKColorspace)
|
|
|
{
|
|
|
mean.direction[i].black+=y*sum[y].direction[i].black;
|
|
|
sum_squares.direction[i].black+=y*y*sum[y].direction[i].black;
|
|
|
}
|
|
|
if (image->alpha_trait != UndefinedPixelTrait)
|
|
|
{
|
|
|
mean.direction[i].alpha+=y*sum[y].direction[i].alpha;
|
|
|
sum_squares.direction[i].alpha+=y*y*sum[y].direction[i].alpha;
|
|
|
}
|
|
|
}
|
|
|
/*
|
|
|
Correlation: measure of linear-dependencies in the image.
|
|
|
*/
|
|
|
channel_features[RedPixelChannel].correlation[i]=
|
|
|
(correlation.direction[i].red-mean.direction[i].red*
|
|
|
mean.direction[i].red)/(sqrt(sum_squares.direction[i].red-
|
|
|
(mean.direction[i].red*mean.direction[i].red))*sqrt(
|
|
|
sum_squares.direction[i].red-(mean.direction[i].red*
|
|
|
mean.direction[i].red)));
|
|
|
channel_features[GreenPixelChannel].correlation[i]=
|
|
|
(correlation.direction[i].green-mean.direction[i].green*
|
|
|
mean.direction[i].green)/(sqrt(sum_squares.direction[i].green-
|
|
|
(mean.direction[i].green*mean.direction[i].green))*sqrt(
|
|
|
sum_squares.direction[i].green-(mean.direction[i].green*
|
|
|
mean.direction[i].green)));
|
|
|
channel_features[BluePixelChannel].correlation[i]=
|
|
|
(correlation.direction[i].blue-mean.direction[i].blue*
|
|
|
mean.direction[i].blue)/(sqrt(sum_squares.direction[i].blue-
|
|
|
(mean.direction[i].blue*mean.direction[i].blue))*sqrt(
|
|
|
sum_squares.direction[i].blue-(mean.direction[i].blue*
|
|
|
mean.direction[i].blue)));
|
|
|
if (image->colorspace == CMYKColorspace)
|
|
|
channel_features[BlackPixelChannel].correlation[i]=
|
|
|
(correlation.direction[i].black-mean.direction[i].black*
|
|
|
mean.direction[i].black)/(sqrt(sum_squares.direction[i].black-
|
|
|
(mean.direction[i].black*mean.direction[i].black))*sqrt(
|
|
|
sum_squares.direction[i].black-(mean.direction[i].black*
|
|
|
mean.direction[i].black)));
|
|
|
if (image->alpha_trait != UndefinedPixelTrait)
|
|
|
channel_features[AlphaPixelChannel].correlation[i]=
|
|
|
(correlation.direction[i].alpha-mean.direction[i].alpha*
|
|
|
mean.direction[i].alpha)/(sqrt(sum_squares.direction[i].alpha-
|
|
|
(mean.direction[i].alpha*mean.direction[i].alpha))*sqrt(
|
|
|
sum_squares.direction[i].alpha-(mean.direction[i].alpha*
|
|
|
mean.direction[i].alpha)));
|
|
|
}
|
|
|
/*
|
|
|
Compute more texture features.
|
|
|
*/
|
|
|
#if defined(MAGICKCORE_OPENMP_SUPPORT)
|
|
|
#pragma omp parallel for schedule(static) shared(status) \
|
|
|
magick_number_threads(image,image,number_grays,1)
|
|
|
#endif
|
|
|
for (i=0; i < 4; i++)
|
|
|
{
|
|
|
ssize_t
|
|
|
x;
|
|
|
|
|
|
for (x=2; x < (ssize_t) (2*number_grays); x++)
|
|
|
{
|
|
|
/*
|
|
|
Sum average.
|
|
|
*/
|
|
|
channel_features[RedPixelChannel].sum_average[i]+=
|
|
|
x*density_xy[x].direction[i].red;
|
|
|
channel_features[GreenPixelChannel].sum_average[i]+=
|
|
|
x*density_xy[x].direction[i].green;
|
|
|
channel_features[BluePixelChannel].sum_average[i]+=
|
|
|
x*density_xy[x].direction[i].blue;
|
|
|
if (image->colorspace == CMYKColorspace)
|
|
|
channel_features[BlackPixelChannel].sum_average[i]+=
|
|
|
x*density_xy[x].direction[i].black;
|
|
|
if (image->alpha_trait != UndefinedPixelTrait)
|
|
|
channel_features[AlphaPixelChannel].sum_average[i]+=
|
|
|
x*density_xy[x].direction[i].alpha;
|
|
|
/*
|
|
|
Sum entropy.
|
|
|
*/
|
|
|
channel_features[RedPixelChannel].sum_entropy[i]-=
|
|
|
density_xy[x].direction[i].red*
|
|
|
MagickLog10(density_xy[x].direction[i].red);
|
|
|
channel_features[GreenPixelChannel].sum_entropy[i]-=
|
|
|
density_xy[x].direction[i].green*
|
|
|
MagickLog10(density_xy[x].direction[i].green);
|
|
|
channel_features[BluePixelChannel].sum_entropy[i]-=
|
|
|
density_xy[x].direction[i].blue*
|
|
|
MagickLog10(density_xy[x].direction[i].blue);
|
|
|
if (image->colorspace == CMYKColorspace)
|
|
|
channel_features[BlackPixelChannel].sum_entropy[i]-=
|
|
|
density_xy[x].direction[i].black*
|
|
|
MagickLog10(density_xy[x].direction[i].black);
|
|
|
if (image->alpha_trait != UndefinedPixelTrait)
|
|
|
channel_features[AlphaPixelChannel].sum_entropy[i]-=
|
|
|
density_xy[x].direction[i].alpha*
|
|
|
MagickLog10(density_xy[x].direction[i].alpha);
|
|
|
/*
|
|
|
Sum variance.
|
|
|
*/
|
|
|
channel_features[RedPixelChannel].sum_variance[i]+=
|
|
|
(x-channel_features[RedPixelChannel].sum_entropy[i])*
|
|
|
(x-channel_features[RedPixelChannel].sum_entropy[i])*
|
|
|
density_xy[x].direction[i].red;
|
|
|
channel_features[GreenPixelChannel].sum_variance[i]+=
|
|
|
(x-channel_features[GreenPixelChannel].sum_entropy[i])*
|
|
|
(x-channel_features[GreenPixelChannel].sum_entropy[i])*
|
|
|
density_xy[x].direction[i].green;
|
|
|
channel_features[BluePixelChannel].sum_variance[i]+=
|
|
|
(x-channel_features[BluePixelChannel].sum_entropy[i])*
|
|
|
(x-channel_features[BluePixelChannel].sum_entropy[i])*
|
|
|
density_xy[x].direction[i].blue;
|
|
|
if (image->colorspace == CMYKColorspace)
|
|
|
channel_features[BlackPixelChannel].sum_variance[i]+=
|
|
|
(x-channel_features[BlackPixelChannel].sum_entropy[i])*
|
|
|
(x-channel_features[BlackPixelChannel].sum_entropy[i])*
|
|
|
density_xy[x].direction[i].black;
|
|
|
if (image->alpha_trait != UndefinedPixelTrait)
|
|
|
channel_features[AlphaPixelChannel].sum_variance[i]+=
|
|
|
(x-channel_features[AlphaPixelChannel].sum_entropy[i])*
|
|
|
(x-channel_features[AlphaPixelChannel].sum_entropy[i])*
|
|
|
density_xy[x].direction[i].alpha;
|
|
|
}
|
|
|
}
|
|
|
/*
|
|
|
Compute more texture features.
|
|
|
*/
|
|
|
#if defined(MAGICKCORE_OPENMP_SUPPORT)
|
|
|
#pragma omp parallel for schedule(static) shared(status) \
|
|
|
magick_number_threads(image,image,number_grays,1)
|
|
|
#endif
|
|
|
for (i=0; i < 4; i++)
|
|
|
{
|
|
|
ssize_t
|
|
|
y;
|
|
|
|
|
|
for (y=0; y < (ssize_t) number_grays; y++)
|
|
|
{
|
|
|
ssize_t
|
|
|
x;
|
|
|
|
|
|
for (x=0; x < (ssize_t) number_grays; x++)
|
|
|
{
|
|
|
/*
|
|
|
Sum of Squares: Variance
|
|
|
*/
|
|
|
variance.direction[i].red+=(y-mean.direction[i].red+1)*
|
|
|
(y-mean.direction[i].red+1)*cooccurrence[x][y].direction[i].red;
|
|
|
variance.direction[i].green+=(y-mean.direction[i].green+1)*
|
|
|
(y-mean.direction[i].green+1)*cooccurrence[x][y].direction[i].green;
|
|
|
variance.direction[i].blue+=(y-mean.direction[i].blue+1)*
|
|
|
(y-mean.direction[i].blue+1)*cooccurrence[x][y].direction[i].blue;
|
|
|
if (image->colorspace == CMYKColorspace)
|
|
|
variance.direction[i].black+=(y-mean.direction[i].black+1)*
|
|
|
(y-mean.direction[i].black+1)*cooccurrence[x][y].direction[i].black;
|
|
|
if (image->alpha_trait != UndefinedPixelTrait)
|
|
|
variance.direction[i].alpha+=(y-mean.direction[i].alpha+1)*
|
|
|
(y-mean.direction[i].alpha+1)*
|
|
|
cooccurrence[x][y].direction[i].alpha;
|
|
|
/*
|
|
|
Sum average / Difference Variance.
|
|
|
*/
|
|
|
density_xy[MagickAbsoluteValue(y-x)].direction[i].red+=
|
|
|
cooccurrence[x][y].direction[i].red;
|
|
|
density_xy[MagickAbsoluteValue(y-x)].direction[i].green+=
|
|
|
cooccurrence[x][y].direction[i].green;
|
|
|
density_xy[MagickAbsoluteValue(y-x)].direction[i].blue+=
|
|
|
cooccurrence[x][y].direction[i].blue;
|
|
|
if (image->colorspace == CMYKColorspace)
|
|
|
density_xy[MagickAbsoluteValue(y-x)].direction[i].black+=
|
|
|
cooccurrence[x][y].direction[i].black;
|
|
|
if (image->alpha_trait != UndefinedPixelTrait)
|
|
|
density_xy[MagickAbsoluteValue(y-x)].direction[i].alpha+=
|
|
|
cooccurrence[x][y].direction[i].alpha;
|
|
|
/*
|
|
|
Information Measures of Correlation.
|
|
|
*/
|
|
|
entropy_xy.direction[i].red-=cooccurrence[x][y].direction[i].red*
|
|
|
MagickLog10(cooccurrence[x][y].direction[i].red);
|
|
|
entropy_xy.direction[i].green-=cooccurrence[x][y].direction[i].green*
|
|
|
MagickLog10(cooccurrence[x][y].direction[i].green);
|
|
|
entropy_xy.direction[i].blue-=cooccurrence[x][y].direction[i].blue*
|
|
|
MagickLog10(cooccurrence[x][y].direction[i].blue);
|
|
|
if (image->colorspace == CMYKColorspace)
|
|
|
entropy_xy.direction[i].black-=cooccurrence[x][y].direction[i].black*
|
|
|
MagickLog10(cooccurrence[x][y].direction[i].black);
|
|
|
if (image->alpha_trait != UndefinedPixelTrait)
|
|
|
entropy_xy.direction[i].alpha-=
|
|
|
cooccurrence[x][y].direction[i].alpha*MagickLog10(
|
|
|
cooccurrence[x][y].direction[i].alpha);
|
|
|
entropy_xy1.direction[i].red-=(cooccurrence[x][y].direction[i].red*
|
|
|
MagickLog10(density_x[x].direction[i].red*density_y[y].direction[i].red));
|
|
|
entropy_xy1.direction[i].green-=(cooccurrence[x][y].direction[i].green*
|
|
|
MagickLog10(density_x[x].direction[i].green*
|
|
|
density_y[y].direction[i].green));
|
|
|
entropy_xy1.direction[i].blue-=(cooccurrence[x][y].direction[i].blue*
|
|
|
MagickLog10(density_x[x].direction[i].blue*density_y[y].direction[i].blue));
|
|
|
if (image->colorspace == CMYKColorspace)
|
|
|
entropy_xy1.direction[i].black-=(
|
|
|
cooccurrence[x][y].direction[i].black*MagickLog10(
|
|
|
density_x[x].direction[i].black*density_y[y].direction[i].black));
|
|
|
if (image->alpha_trait != UndefinedPixelTrait)
|
|
|
entropy_xy1.direction[i].alpha-=(
|
|
|
cooccurrence[x][y].direction[i].alpha*MagickLog10(
|
|
|
density_x[x].direction[i].alpha*density_y[y].direction[i].alpha));
|
|
|
entropy_xy2.direction[i].red-=(density_x[x].direction[i].red*
|
|
|
density_y[y].direction[i].red*MagickLog10(density_x[x].direction[i].red*
|
|
|
density_y[y].direction[i].red));
|
|
|
entropy_xy2.direction[i].green-=(density_x[x].direction[i].green*
|
|
|
density_y[y].direction[i].green*MagickLog10(density_x[x].direction[i].green*
|
|
|
density_y[y].direction[i].green));
|
|
|
entropy_xy2.direction[i].blue-=(density_x[x].direction[i].blue*
|
|
|
density_y[y].direction[i].blue*MagickLog10(density_x[x].direction[i].blue*
|
|
|
density_y[y].direction[i].blue));
|
|
|
if (image->colorspace == CMYKColorspace)
|
|
|
entropy_xy2.direction[i].black-=(density_x[x].direction[i].black*
|
|
|
density_y[y].direction[i].black*MagickLog10(
|
|
|
density_x[x].direction[i].black*density_y[y].direction[i].black));
|
|
|
if (image->alpha_trait != UndefinedPixelTrait)
|
|
|
entropy_xy2.direction[i].alpha-=(density_x[x].direction[i].alpha*
|
|
|
density_y[y].direction[i].alpha*MagickLog10(
|
|
|
density_x[x].direction[i].alpha*density_y[y].direction[i].alpha));
|
|
|
}
|
|
|
}
|
|
|
channel_features[RedPixelChannel].variance_sum_of_squares[i]=
|
|
|
variance.direction[i].red;
|
|
|
channel_features[GreenPixelChannel].variance_sum_of_squares[i]=
|
|
|
variance.direction[i].green;
|
|
|
channel_features[BluePixelChannel].variance_sum_of_squares[i]=
|
|
|
variance.direction[i].blue;
|
|
|
if (image->colorspace == CMYKColorspace)
|
|
|
channel_features[BlackPixelChannel].variance_sum_of_squares[i]=
|
|
|
variance.direction[i].black;
|
|
|
if (image->alpha_trait != UndefinedPixelTrait)
|
|
|
channel_features[AlphaPixelChannel].variance_sum_of_squares[i]=
|
|
|
variance.direction[i].alpha;
|
|
|
}
|
|
|
/*
|
|
|
Compute more texture features.
|
|
|
*/
|
|
|
(void) memset(&variance,0,sizeof(variance));
|
|
|
(void) memset(&sum_squares,0,sizeof(sum_squares));
|
|
|
#if defined(MAGICKCORE_OPENMP_SUPPORT)
|
|
|
#pragma omp parallel for schedule(static) shared(status) \
|
|
|
magick_number_threads(image,image,number_grays,1)
|
|
|
#endif
|
|
|
for (i=0; i < 4; i++)
|
|
|
{
|
|
|
ssize_t
|
|
|
x;
|
|
|
|
|
|
for (x=0; x < (ssize_t) number_grays; x++)
|
|
|
{
|
|
|
/*
|
|
|
Difference variance.
|
|
|
*/
|
|
|
variance.direction[i].red+=density_xy[x].direction[i].red;
|
|
|
variance.direction[i].green+=density_xy[x].direction[i].green;
|
|
|
variance.direction[i].blue+=density_xy[x].direction[i].blue;
|
|
|
if (image->colorspace == CMYKColorspace)
|
|
|
variance.direction[i].black+=density_xy[x].direction[i].black;
|
|
|
if (image->alpha_trait != UndefinedPixelTrait)
|
|
|
variance.direction[i].alpha+=density_xy[x].direction[i].alpha;
|
|
|
sum_squares.direction[i].red+=density_xy[x].direction[i].red*
|
|
|
density_xy[x].direction[i].red;
|
|
|
sum_squares.direction[i].green+=density_xy[x].direction[i].green*
|
|
|
density_xy[x].direction[i].green;
|
|
|
sum_squares.direction[i].blue+=density_xy[x].direction[i].blue*
|
|
|
density_xy[x].direction[i].blue;
|
|
|
if (image->colorspace == CMYKColorspace)
|
|
|
sum_squares.direction[i].black+=density_xy[x].direction[i].black*
|
|
|
density_xy[x].direction[i].black;
|
|
|
if (image->alpha_trait != UndefinedPixelTrait)
|
|
|
sum_squares.direction[i].alpha+=density_xy[x].direction[i].alpha*
|
|
|
density_xy[x].direction[i].alpha;
|
|
|
/*
|
|
|
Difference entropy.
|
|
|
*/
|
|
|
channel_features[RedPixelChannel].difference_entropy[i]-=
|
|
|
density_xy[x].direction[i].red*
|
|
|
MagickLog10(density_xy[x].direction[i].red);
|
|
|
channel_features[GreenPixelChannel].difference_entropy[i]-=
|
|
|
density_xy[x].direction[i].green*
|
|
|
MagickLog10(density_xy[x].direction[i].green);
|
|
|
channel_features[BluePixelChannel].difference_entropy[i]-=
|
|
|
density_xy[x].direction[i].blue*
|
|
|
MagickLog10(density_xy[x].direction[i].blue);
|
|
|
if (image->colorspace == CMYKColorspace)
|
|
|
channel_features[BlackPixelChannel].difference_entropy[i]-=
|
|
|
density_xy[x].direction[i].black*
|
|
|
MagickLog10(density_xy[x].direction[i].black);
|
|
|
if (image->alpha_trait != UndefinedPixelTrait)
|
|
|
channel_features[AlphaPixelChannel].difference_entropy[i]-=
|
|
|
density_xy[x].direction[i].alpha*
|
|
|
MagickLog10(density_xy[x].direction[i].alpha);
|
|
|
/*
|
|
|
Information Measures of Correlation.
|
|
|
*/
|
|
|
entropy_x.direction[i].red-=(density_x[x].direction[i].red*
|
|
|
MagickLog10(density_x[x].direction[i].red));
|
|
|
entropy_x.direction[i].green-=(density_x[x].direction[i].green*
|
|
|
MagickLog10(density_x[x].direction[i].green));
|
|
|
entropy_x.direction[i].blue-=(density_x[x].direction[i].blue*
|
|
|
MagickLog10(density_x[x].direction[i].blue));
|
|
|
if (image->colorspace == CMYKColorspace)
|
|
|
entropy_x.direction[i].black-=(density_x[x].direction[i].black*
|
|
|
MagickLog10(density_x[x].direction[i].black));
|
|
|
if (image->alpha_trait != UndefinedPixelTrait)
|
|
|
entropy_x.direction[i].alpha-=(density_x[x].direction[i].alpha*
|
|
|
MagickLog10(density_x[x].direction[i].alpha));
|
|
|
entropy_y.direction[i].red-=(density_y[x].direction[i].red*
|
|
|
MagickLog10(density_y[x].direction[i].red));
|
|
|
entropy_y.direction[i].green-=(density_y[x].direction[i].green*
|
|
|
MagickLog10(density_y[x].direction[i].green));
|
|
|
entropy_y.direction[i].blue-=(density_y[x].direction[i].blue*
|
|
|
MagickLog10(density_y[x].direction[i].blue));
|
|
|
if (image->colorspace == CMYKColorspace)
|
|
|
entropy_y.direction[i].black-=(density_y[x].direction[i].black*
|
|
|
MagickLog10(density_y[x].direction[i].black));
|
|
|
if (image->alpha_trait != UndefinedPixelTrait)
|
|
|
entropy_y.direction[i].alpha-=(density_y[x].direction[i].alpha*
|
|
|
MagickLog10(density_y[x].direction[i].alpha));
|
|
|
}
|
|
|
/*
|
|
|
Difference variance.
|
|
|
*/
|
|
|
channel_features[RedPixelChannel].difference_variance[i]=
|
|
|
(((double) number_grays*number_grays*sum_squares.direction[i].red)-
|
|
|
(variance.direction[i].red*variance.direction[i].red))/
|
|
|
((double) number_grays*number_grays*number_grays*number_grays);
|
|
|
channel_features[GreenPixelChannel].difference_variance[i]=
|
|
|
(((double) number_grays*number_grays*sum_squares.direction[i].green)-
|
|
|
(variance.direction[i].green*variance.direction[i].green))/
|
|
|
((double) number_grays*number_grays*number_grays*number_grays);
|
|
|
channel_features[BluePixelChannel].difference_variance[i]=
|
|
|
(((double) number_grays*number_grays*sum_squares.direction[i].blue)-
|
|
|
(variance.direction[i].blue*variance.direction[i].blue))/
|
|
|
((double) number_grays*number_grays*number_grays*number_grays);
|
|
|
if (image->colorspace == CMYKColorspace)
|
|
|
channel_features[BlackPixelChannel].difference_variance[i]=
|
|
|
(((double) number_grays*number_grays*sum_squares.direction[i].black)-
|
|
|
(variance.direction[i].black*variance.direction[i].black))/
|
|
|
((double) number_grays*number_grays*number_grays*number_grays);
|
|
|
if (image->alpha_trait != UndefinedPixelTrait)
|
|
|
channel_features[AlphaPixelChannel].difference_variance[i]=
|
|
|
(((double) number_grays*number_grays*sum_squares.direction[i].alpha)-
|
|
|
(variance.direction[i].alpha*variance.direction[i].alpha))/
|
|
|
((double) number_grays*number_grays*number_grays*number_grays);
|
|
|
/*
|
|
|
Information Measures of Correlation.
|
|
|
*/
|
|
|
channel_features[RedPixelChannel].measure_of_correlation_1[i]=
|
|
|
(entropy_xy.direction[i].red-entropy_xy1.direction[i].red)/
|
|
|
(entropy_x.direction[i].red > entropy_y.direction[i].red ?
|
|
|
entropy_x.direction[i].red : entropy_y.direction[i].red);
|
|
|
channel_features[GreenPixelChannel].measure_of_correlation_1[i]=
|
|
|
(entropy_xy.direction[i].green-entropy_xy1.direction[i].green)/
|
|
|
(entropy_x.direction[i].green > entropy_y.direction[i].green ?
|
|
|
entropy_x.direction[i].green : entropy_y.direction[i].green);
|
|
|
channel_features[BluePixelChannel].measure_of_correlation_1[i]=
|
|
|
(entropy_xy.direction[i].blue-entropy_xy1.direction[i].blue)/
|
|
|
(entropy_x.direction[i].blue > entropy_y.direction[i].blue ?
|
|
|
entropy_x.direction[i].blue : entropy_y.direction[i].blue);
|
|
|
if (image->colorspace == CMYKColorspace)
|
|
|
channel_features[BlackPixelChannel].measure_of_correlation_1[i]=
|
|
|
(entropy_xy.direction[i].black-entropy_xy1.direction[i].black)/
|
|
|
(entropy_x.direction[i].black > entropy_y.direction[i].black ?
|
|
|
entropy_x.direction[i].black : entropy_y.direction[i].black);
|
|
|
if (image->alpha_trait != UndefinedPixelTrait)
|
|
|
channel_features[AlphaPixelChannel].measure_of_correlation_1[i]=
|
|
|
(entropy_xy.direction[i].alpha-entropy_xy1.direction[i].alpha)/
|
|
|
(entropy_x.direction[i].alpha > entropy_y.direction[i].alpha ?
|
|
|
entropy_x.direction[i].alpha : entropy_y.direction[i].alpha);
|
|
|
channel_features[RedPixelChannel].measure_of_correlation_2[i]=
|
|
|
(sqrt(fabs(1.0-exp(-2.0*(double) (entropy_xy2.direction[i].red-
|
|
|
entropy_xy.direction[i].red)))));
|
|
|
channel_features[GreenPixelChannel].measure_of_correlation_2[i]=
|
|
|
(sqrt(fabs(1.0-exp(-2.0*(double) (entropy_xy2.direction[i].green-
|
|
|
entropy_xy.direction[i].green)))));
|
|
|
channel_features[BluePixelChannel].measure_of_correlation_2[i]=
|
|
|
(sqrt(fabs(1.0-exp(-2.0*(double) (entropy_xy2.direction[i].blue-
|
|
|
entropy_xy.direction[i].blue)))));
|
|
|
if (image->colorspace == CMYKColorspace)
|
|
|
channel_features[BlackPixelChannel].measure_of_correlation_2[i]=
|
|
|
(sqrt(fabs(1.0-exp(-2.0*(double) (entropy_xy2.direction[i].black-
|
|
|
entropy_xy.direction[i].black)))));
|
|
|
if (image->alpha_trait != UndefinedPixelTrait)
|
|
|
channel_features[AlphaPixelChannel].measure_of_correlation_2[i]=
|
|
|
(sqrt(fabs(1.0-exp(-2.0*(double) (entropy_xy2.direction[i].alpha-
|
|
|
entropy_xy.direction[i].alpha)))));
|
|
|
}
|
|
|
/*
|
|
|
Compute more texture features.
|
|
|
*/
|
|
|
#if defined(MAGICKCORE_OPENMP_SUPPORT)
|
|
|
#pragma omp parallel for schedule(static) shared(status) \
|
|
|
magick_number_threads(image,image,number_grays,1)
|
|
|
#endif
|
|
|
for (i=0; i < 4; i++)
|
|
|
{
|
|
|
ssize_t
|
|
|
z;
|
|
|
|
|
|
for (z=0; z < (ssize_t) number_grays; z++)
|
|
|
{
|
|
|
ssize_t
|
|
|
y;
|
|
|
|
|
|
ChannelStatistics
|
|
|
pixel;
|
|
|
|
|
|
(void) memset(&pixel,0,sizeof(pixel));
|
|
|
for (y=0; y < (ssize_t) number_grays; y++)
|
|
|
{
|
|
|
ssize_t
|
|
|
x;
|
|
|
|
|
|
for (x=0; x < (ssize_t) number_grays; x++)
|
|
|
{
|
|
|
/*
|
|
|
Contrast: amount of local variations present in an image.
|
|
|
*/
|
|
|
if (((y-x) == z) || ((x-y) == z))
|
|
|
{
|
|
|
pixel.direction[i].red+=cooccurrence[x][y].direction[i].red;
|
|
|
pixel.direction[i].green+=cooccurrence[x][y].direction[i].green;
|
|
|
pixel.direction[i].blue+=cooccurrence[x][y].direction[i].blue;
|
|
|
if (image->colorspace == CMYKColorspace)
|
|
|
pixel.direction[i].black+=cooccurrence[x][y].direction[i].black;
|
|
|
if (image->alpha_trait != UndefinedPixelTrait)
|
|
|
pixel.direction[i].alpha+=
|
|
|
cooccurrence[x][y].direction[i].alpha;
|
|
|
}
|
|
|
/*
|
|
|
Maximum Correlation Coefficient.
|
|
|
*/
|
|
|
if ((fabs(density_x[z].direction[i].red) > MagickEpsilon) &&
|
|
|
(fabs(density_y[x].direction[i].red) > MagickEpsilon))
|
|
|
Q[z][y].direction[i].red+=cooccurrence[z][x].direction[i].red*
|
|
|
cooccurrence[y][x].direction[i].red/density_x[z].direction[i].red/
|
|
|
density_y[x].direction[i].red;
|
|
|
if ((fabs(density_x[z].direction[i].green) > MagickEpsilon) &&
|
|
|
(fabs(density_y[x].direction[i].red) > MagickEpsilon))
|
|
|
Q[z][y].direction[i].green+=cooccurrence[z][x].direction[i].green*
|
|
|
cooccurrence[y][x].direction[i].green/
|
|
|
density_x[z].direction[i].green/density_y[x].direction[i].red;
|
|
|
if ((fabs(density_x[z].direction[i].blue) > MagickEpsilon) &&
|
|
|
(fabs(density_y[x].direction[i].blue) > MagickEpsilon))
|
|
|
Q[z][y].direction[i].blue+=cooccurrence[z][x].direction[i].blue*
|
|
|
cooccurrence[y][x].direction[i].blue/
|
|
|
density_x[z].direction[i].blue/density_y[x].direction[i].blue;
|
|
|
if (image->colorspace == CMYKColorspace)
|
|
|
if ((fabs(density_x[z].direction[i].black) > MagickEpsilon) &&
|
|
|
(fabs(density_y[x].direction[i].black) > MagickEpsilon))
|
|
|
Q[z][y].direction[i].black+=cooccurrence[z][x].direction[i].black*
|
|
|
cooccurrence[y][x].direction[i].black/
|
|
|
density_x[z].direction[i].black/density_y[x].direction[i].black;
|
|
|
if (image->alpha_trait != UndefinedPixelTrait)
|
|
|
if ((fabs(density_x[z].direction[i].alpha) > MagickEpsilon) &&
|
|
|
(fabs(density_y[x].direction[i].alpha) > MagickEpsilon))
|
|
|
Q[z][y].direction[i].alpha+=
|
|
|
cooccurrence[z][x].direction[i].alpha*
|
|
|
cooccurrence[y][x].direction[i].alpha/
|
|
|
density_x[z].direction[i].alpha/
|
|
|
density_y[x].direction[i].alpha;
|
|
|
}
|
|
|
}
|
|
|
channel_features[RedPixelChannel].contrast[i]+=z*z*
|
|
|
pixel.direction[i].red;
|
|
|
channel_features[GreenPixelChannel].contrast[i]+=z*z*
|
|
|
pixel.direction[i].green;
|
|
|
channel_features[BluePixelChannel].contrast[i]+=z*z*
|
|
|
pixel.direction[i].blue;
|
|
|
if (image->colorspace == CMYKColorspace)
|
|
|
channel_features[BlackPixelChannel].contrast[i]+=z*z*
|
|
|
pixel.direction[i].black;
|
|
|
if (image->alpha_trait != UndefinedPixelTrait)
|
|
|
channel_features[AlphaPixelChannel].contrast[i]+=z*z*
|
|
|
pixel.direction[i].alpha;
|
|
|
}
|
|
|
/*
|
|
|
Maximum Correlation Coefficient.
|
|
|
Future: return second largest eigenvalue of Q.
|
|
|
*/
|
|
|
channel_features[RedPixelChannel].maximum_correlation_coefficient[i]=
|
|
|
sqrt((double) -1.0);
|
|
|
channel_features[GreenPixelChannel].maximum_correlation_coefficient[i]=
|
|
|
sqrt((double) -1.0);
|
|
|
channel_features[BluePixelChannel].maximum_correlation_coefficient[i]=
|
|
|
sqrt((double) -1.0);
|
|
|
if (image->colorspace == CMYKColorspace)
|
|
|
channel_features[BlackPixelChannel].maximum_correlation_coefficient[i]=
|
|
|
sqrt((double) -1.0);
|
|
|
if (image->alpha_trait != UndefinedPixelTrait)
|
|
|
channel_features[AlphaPixelChannel].maximum_correlation_coefficient[i]=
|
|
|
sqrt((double) -1.0);
|
|
|
}
|
|
|
/*
|
|
|
Relinquish resources.
|
|
|
*/
|
|
|
sum=(ChannelStatistics *) RelinquishMagickMemory(sum);
|
|
|
for (i=0; i < (ssize_t) number_grays; i++)
|
|
|
Q[i]=(ChannelStatistics *) RelinquishMagickMemory(Q[i]);
|
|
|
Q=(ChannelStatistics **) RelinquishMagickMemory(Q);
|
|
|
density_y=(ChannelStatistics *) RelinquishMagickMemory(density_y);
|
|
|
density_xy=(ChannelStatistics *) RelinquishMagickMemory(density_xy);
|
|
|
density_x=(ChannelStatistics *) RelinquishMagickMemory(density_x);
|
|
|
for (i=0; i < (ssize_t) number_grays; i++)
|
|
|
cooccurrence[i]=(ChannelStatistics *)
|
|
|
RelinquishMagickMemory(cooccurrence[i]);
|
|
|
cooccurrence=(ChannelStatistics **) RelinquishMagickMemory(cooccurrence);
|
|
|
return(channel_features);
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
% %
|
|
|
% %
|
|
|
% %
|
|
|
% H o u g h L i n e I m a g e %
|
|
|
% %
|
|
|
% %
|
|
|
% %
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
%
|
|
|
% Use HoughLineImage() in conjunction with any binary edge extracted image (we
|
|
|
% recommand Canny) to identify lines in the image. The algorithm accumulates
|
|
|
% counts for every white pixel for every possible orientation (for angles from
|
|
|
% 0 to 179 in 1 degree increments) and distance from the center of the image to
|
|
|
% the corner (in 1 px increments) and stores the counts in an accumulator
|
|
|
% matrix of angle vs distance. The size of the accumulator is 180x(diagonal/2).
|
|
|
% Next it searches this space for peaks in counts and converts the locations
|
|
|
% of the peaks to slope and intercept in the normal x,y input image space. Use
|
|
|
% the slope/intercepts to find the endpoints clipped to the bounds of the
|
|
|
% image. The lines are then drawn. The counts are a measure of the length of
|
|
|
% the lines.
|
|
|
%
|
|
|
% The format of the HoughLineImage method is:
|
|
|
%
|
|
|
% Image *HoughLineImage(const Image *image,const size_t width,
|
|
|
% const size_t height,const size_t threshold,ExceptionInfo *exception)
|
|
|
%
|
|
|
% A description of each parameter follows:
|
|
|
%
|
|
|
% o image: the image.
|
|
|
%
|
|
|
% o width, height: find line pairs as local maxima in this neighborhood.
|
|
|
%
|
|
|
% o threshold: the line count threshold.
|
|
|
%
|
|
|
% o exception: return any errors or warnings in this structure.
|
|
|
%
|
|
|
*/
|
|
|
|
|
|
static inline double MagickRound(double x)
|
|
|
{
|
|
|
/*
|
|
|
Round the fraction to nearest integer.
|
|
|
*/
|
|
|
if ((x-floor(x)) < (ceil(x)-x))
|
|
|
return(floor(x));
|
|
|
return(ceil(x));
|
|
|
}
|
|
|
|
|
|
static Image *RenderHoughLines(const ImageInfo *image_info,const size_t columns,
|
|
|
const size_t rows,ExceptionInfo *exception)
|
|
|
{
|
|
|
#define BoundingBox "viewbox"
|
|
|
|
|
|
DrawInfo
|
|
|
*draw_info;
|
|
|
|
|
|
Image
|
|
|
*image;
|
|
|
|
|
|
MagickBooleanType
|
|
|
status;
|
|
|
|
|
|
/*
|
|
|
Open image.
|
|
|
*/
|
|
|
image=AcquireImage(image_info,exception);
|
|
|
status=OpenBlob(image_info,image,ReadBinaryBlobMode,exception);
|
|
|
if (status == MagickFalse)
|
|
|
{
|
|
|
image=DestroyImageList(image);
|
|
|
return((Image *) NULL);
|
|
|
}
|
|
|
image->columns=columns;
|
|
|
image->rows=rows;
|
|
|
draw_info=CloneDrawInfo(image_info,(DrawInfo *) NULL);
|
|
|
draw_info->affine.sx=image->resolution.x == 0.0 ? 1.0 : image->resolution.x/
|
|
|
DefaultResolution;
|
|
|
draw_info->affine.sy=image->resolution.y == 0.0 ? 1.0 : image->resolution.y/
|
|
|
DefaultResolution;
|
|
|
image->columns=(size_t) (draw_info->affine.sx*image->columns);
|
|
|
image->rows=(size_t) (draw_info->affine.sy*image->rows);
|
|
|
status=SetImageExtent(image,image->columns,image->rows,exception);
|
|
|
if (status == MagickFalse)
|
|
|
return(DestroyImageList(image));
|
|
|
if (SetImageBackgroundColor(image,exception) == MagickFalse)
|
|
|
{
|
|
|
image=DestroyImageList(image);
|
|
|
return((Image *) NULL);
|
|
|
}
|
|
|
/*
|
|
|
Render drawing.
|
|
|
*/
|
|
|
if (GetBlobStreamData(image) == (unsigned char *) NULL)
|
|
|
draw_info->primitive=FileToString(image->filename,~0UL,exception);
|
|
|
else
|
|
|
{
|
|
|
draw_info->primitive=(char *) AcquireQuantumMemory(1,(size_t)
|
|
|
GetBlobSize(image)+1);
|
|
|
if (draw_info->primitive != (char *) NULL)
|
|
|
{
|
|
|
(void) memcpy(draw_info->primitive,GetBlobStreamData(image),
|
|
|
(size_t) GetBlobSize(image));
|
|
|
draw_info->primitive[GetBlobSize(image)]='\0';
|
|
|
}
|
|
|
}
|
|
|
(void) DrawImage(image,draw_info,exception);
|
|
|
draw_info=DestroyDrawInfo(draw_info);
|
|
|
(void) CloseBlob(image);
|
|
|
return(GetFirstImageInList(image));
|
|
|
}
|
|
|
|
|
|
MagickExport Image *HoughLineImage(const Image *image,const size_t width,
|
|
|
const size_t height,const size_t threshold,ExceptionInfo *exception)
|
|
|
{
|
|
|
#define HoughLineImageTag "HoughLine/Image"
|
|
|
|
|
|
CacheView
|
|
|
*image_view;
|
|
|
|
|
|
char
|
|
|
message[MagickPathExtent],
|
|
|
path[MagickPathExtent];
|
|
|
|
|
|
const char
|
|
|
*artifact;
|
|
|
|
|
|
double
|
|
|
hough_height;
|
|
|
|
|
|
Image
|
|
|
*lines_image = NULL;
|
|
|
|
|
|
ImageInfo
|
|
|
*image_info;
|
|
|
|
|
|
int
|
|
|
file;
|
|
|
|
|
|
MagickBooleanType
|
|
|
status;
|
|
|
|
|
|
MagickOffsetType
|
|
|
progress;
|
|
|
|
|
|
MatrixInfo
|
|
|
*accumulator;
|
|
|
|
|
|
PointInfo
|
|
|
center;
|
|
|
|
|
|
ssize_t
|
|
|
y;
|
|
|
|
|
|
size_t
|
|
|
accumulator_height,
|
|
|
accumulator_width,
|
|
|
line_count;
|
|
|
|
|
|
/*
|
|
|
Create the accumulator.
|
|
|
*/
|
|
|
assert(image != (const Image *) NULL);
|
|
|
assert(image->signature == MagickCoreSignature);
|
|
|
if (image->debug != MagickFalse)
|
|
|
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
|
|
|
assert(exception != (ExceptionInfo *) NULL);
|
|
|
assert(exception->signature == MagickCoreSignature);
|
|
|
accumulator_width=180;
|
|
|
hough_height=((sqrt(2.0)*(double) (image->rows > image->columns ?
|
|
|
image->rows : image->columns))/2.0);
|
|
|
accumulator_height=(size_t) (2.0*hough_height);
|
|
|
accumulator=AcquireMatrixInfo(accumulator_width,accumulator_height,
|
|
|
sizeof(double),exception);
|
|
|
if (accumulator == (MatrixInfo *) NULL)
|
|
|
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
|
|
|
if (NullMatrix(accumulator) == MagickFalse)
|
|
|
{
|
|
|
accumulator=DestroyMatrixInfo(accumulator);
|
|
|
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
|
|
|
}
|
|
|
/*
|
|
|
Populate the accumulator.
|
|
|
*/
|
|
|
status=MagickTrue;
|
|
|
progress=0;
|
|
|
center.x=(double) image->columns/2.0;
|
|
|
center.y=(double) image->rows/2.0;
|
|
|
image_view=AcquireVirtualCacheView(image,exception);
|
|
|
for (y=0; y < (ssize_t) image->rows; y++)
|
|
|
{
|
|
|
const Quantum
|
|
|
*magick_restrict p;
|
|
|
|
|
|
ssize_t
|
|
|
x;
|
|
|
|
|
|
if (status == MagickFalse)
|
|
|
continue;
|
|
|
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
|
|
|
if (p == (Quantum *) NULL)
|
|
|
{
|
|
|
status=MagickFalse;
|
|
|
continue;
|
|
|
}
|
|
|
for (x=0; x < (ssize_t) image->columns; x++)
|
|
|
{
|
|
|
if (GetPixelIntensity(image,p) > (QuantumRange/2.0))
|
|
|
{
|
|
|
ssize_t
|
|
|
i;
|
|
|
|
|
|
for (i=0; i < 180; i++)
|
|
|
{
|
|
|
double
|
|
|
count,
|
|
|
radius;
|
|
|
|
|
|
radius=(((double) x-center.x)*cos(DegreesToRadians((double) i)))+
|
|
|
(((double) y-center.y)*sin(DegreesToRadians((double) i)));
|
|
|
(void) GetMatrixElement(accumulator,i,(ssize_t)
|
|
|
MagickRound(radius+hough_height),&count);
|
|
|
count++;
|
|
|
(void) SetMatrixElement(accumulator,i,(ssize_t)
|
|
|
MagickRound(radius+hough_height),&count);
|
|
|
}
|
|
|
}
|
|
|
p+=GetPixelChannels(image);
|
|
|
}
|
|
|
if (image->progress_monitor != (MagickProgressMonitor) NULL)
|
|
|
{
|
|
|
MagickBooleanType
|
|
|
proceed;
|
|
|
|
|
|
#if defined(MAGICKCORE_OPENMP_SUPPORT)
|
|
|
#pragma omp atomic
|
|
|
#endif
|
|
|
progress++;
|
|
|
proceed=SetImageProgress(image,CannyEdgeImageTag,progress,image->rows);
|
|
|
if (proceed == MagickFalse)
|
|
|
status=MagickFalse;
|
|
|
}
|
|
|
}
|
|
|
image_view=DestroyCacheView(image_view);
|
|
|
if (status == MagickFalse)
|
|
|
{
|
|
|
accumulator=DestroyMatrixInfo(accumulator);
|
|
|
return((Image *) NULL);
|
|
|
}
|
|
|
/*
|
|
|
Generate line segments from accumulator.
|
|
|
*/
|
|
|
file=AcquireUniqueFileResource(path);
|
|
|
if (file == -1)
|
|
|
{
|
|
|
accumulator=DestroyMatrixInfo(accumulator);
|
|
|
return((Image *) NULL);
|
|
|
}
|
|
|
(void) FormatLocaleString(message,MagickPathExtent,
|
|
|
"# Hough line transform: %.20gx%.20g%+.20g\n",(double) width,
|
|
|
(double) height,(double) threshold);
|
|
|
if (write(file,message,strlen(message)) != (ssize_t) strlen(message))
|
|
|
status=MagickFalse;
|
|
|
(void) FormatLocaleString(message,MagickPathExtent,
|
|
|
"viewbox 0 0 %.20g %.20g\n",(double) image->columns,(double) image->rows);
|
|
|
if (write(file,message,strlen(message)) != (ssize_t) strlen(message))
|
|
|
status=MagickFalse;
|
|
|
(void) FormatLocaleString(message,MagickPathExtent,
|
|
|
"# x1,y1 x2,y2 # count angle distance\n");
|
|
|
if (write(file,message,strlen(message)) != (ssize_t) strlen(message))
|
|
|
status=MagickFalse;
|
|
|
line_count=image->columns > image->rows ? image->columns/4 : image->rows/4;
|
|
|
if (threshold != 0)
|
|
|
line_count=threshold;
|
|
|
for (y=0; y < (ssize_t) accumulator_height; y++)
|
|
|
{
|
|
|
ssize_t
|
|
|
x;
|
|
|
|
|
|
for (x=0; x < (ssize_t) accumulator_width; x++)
|
|
|
{
|
|
|
double
|
|
|
count;
|
|
|
|
|
|
(void) GetMatrixElement(accumulator,x,y,&count);
|
|
|
if (count >= (double) line_count)
|
|
|
{
|
|
|
double
|
|
|
maxima;
|
|
|
|
|
|
SegmentInfo
|
|
|
line;
|
|
|
|
|
|
ssize_t
|
|
|
v;
|
|
|
|
|
|
/*
|
|
|
Is point a local maxima?
|
|
|
*/
|
|
|
maxima=count;
|
|
|
for (v=(-((ssize_t) height/2)); v <= (((ssize_t) height/2)); v++)
|
|
|
{
|
|
|
ssize_t
|
|
|
u;
|
|
|
|
|
|
for (u=(-((ssize_t) width/2)); u <= (((ssize_t) width/2)); u++)
|
|
|
{
|
|
|
if ((u != 0) || (v !=0))
|
|
|
{
|
|
|
(void) GetMatrixElement(accumulator,x+u,y+v,&count);
|
|
|
if (count > maxima)
|
|
|
{
|
|
|
maxima=count;
|
|
|
break;
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
if (u < (ssize_t) (width/2))
|
|
|
break;
|
|
|
}
|
|
|
(void) GetMatrixElement(accumulator,x,y,&count);
|
|
|
if (maxima > count)
|
|
|
continue;
|
|
|
if ((x >= 45) && (x <= 135))
|
|
|
{
|
|
|
/*
|
|
|
y = (r-x cos(t))/sin(t)
|
|
|
*/
|
|
|
line.x1=0.0;
|
|
|
line.y1=((double) (y-(accumulator_height/2.0))-((line.x1-
|
|
|
(image->columns/2.0))*cos(DegreesToRadians((double) x))))/
|
|
|
sin(DegreesToRadians((double) x))+(image->rows/2.0);
|
|
|
line.x2=(double) image->columns;
|
|
|
line.y2=((double) (y-(accumulator_height/2.0))-((line.x2-
|
|
|
(image->columns/2.0))*cos(DegreesToRadians((double) x))))/
|
|
|
sin(DegreesToRadians((double) x))+(image->rows/2.0);
|
|
|
}
|
|
|
else
|
|
|
{
|
|
|
/*
|
|
|
x = (r-y cos(t))/sin(t)
|
|
|
*/
|
|
|
line.y1=0.0;
|
|
|
line.x1=((double) (y-(accumulator_height/2.0))-((line.y1-
|
|
|
(image->rows/2.0))*sin(DegreesToRadians((double) x))))/
|
|
|
cos(DegreesToRadians((double) x))+(image->columns/2.0);
|
|
|
line.y2=(double) image->rows;
|
|
|
line.x2=((double) (y-(accumulator_height/2.0))-((line.y2-
|
|
|
(image->rows/2.0))*sin(DegreesToRadians((double) x))))/
|
|
|
cos(DegreesToRadians((double) x))+(image->columns/2.0);
|
|
|
}
|
|
|
(void) FormatLocaleString(message,MagickPathExtent,
|
|
|
"line %g,%g %g,%g # %g %g %g\n",line.x1,line.y1,line.x2,line.y2,
|
|
|
maxima,(double) x,(double) y);
|
|
|
if (write(file,message,strlen(message)) != (ssize_t) strlen(message))
|
|
|
status=MagickFalse;
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
(void) close(file);
|
|
|
/*
|
|
|
Render lines to image canvas.
|
|
|
*/
|
|
|
image_info=AcquireImageInfo();
|
|
|
image_info->background_color=image->background_color;
|
|
|
(void) FormatLocaleString(image_info->filename,MagickPathExtent,"%s",path);
|
|
|
artifact=GetImageArtifact(image,"background");
|
|
|
if (artifact != (const char *) NULL)
|
|
|
(void) SetImageOption(image_info,"background",artifact);
|
|
|
artifact=GetImageArtifact(image,"fill");
|
|
|
if (artifact != (const char *) NULL)
|
|
|
(void) SetImageOption(image_info,"fill",artifact);
|
|
|
artifact=GetImageArtifact(image,"stroke");
|
|
|
if (artifact != (const char *) NULL)
|
|
|
(void) SetImageOption(image_info,"stroke",artifact);
|
|
|
artifact=GetImageArtifact(image,"strokewidth");
|
|
|
if (artifact != (const char *) NULL)
|
|
|
(void) SetImageOption(image_info,"strokewidth",artifact);
|
|
|
lines_image=RenderHoughLines(image_info,image->columns,image->rows,exception);
|
|
|
artifact=GetImageArtifact(image,"hough-lines:accumulator");
|
|
|
if ((lines_image != (Image *) NULL) &&
|
|
|
(IsStringTrue(artifact) != MagickFalse))
|
|
|
{
|
|
|
Image
|
|
|
*accumulator_image;
|
|
|
|
|
|
accumulator_image=MatrixToImage(accumulator,exception);
|
|
|
if (accumulator_image != (Image *) NULL)
|
|
|
AppendImageToList(&lines_image,accumulator_image);
|
|
|
}
|
|
|
/*
|
|
|
Free resources.
|
|
|
*/
|
|
|
accumulator=DestroyMatrixInfo(accumulator);
|
|
|
image_info=DestroyImageInfo(image_info);
|
|
|
(void) RelinquishUniqueFileResource(path);
|
|
|
return(GetFirstImageInList(lines_image));
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
% %
|
|
|
% %
|
|
|
% %
|
|
|
% M e a n S h i f t I m a g e %
|
|
|
% %
|
|
|
% %
|
|
|
% %
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
%
|
|
|
% MeanShiftImage() delineate arbitrarily shaped clusters in the image. For
|
|
|
% each pixel, it visits all the pixels in the neighborhood specified by
|
|
|
% the window centered at the pixel and excludes those that are outside the
|
|
|
% radius=(window-1)/2 surrounding the pixel. From those pixels, it finds those
|
|
|
% that are within the specified color distance from the current mean, and
|
|
|
% computes a new x,y centroid from those coordinates and a new mean. This new
|
|
|
% x,y centroid is used as the center for a new window. This process iterates
|
|
|
% until it converges and the final mean is replaces the (original window
|
|
|
% center) pixel value. It repeats this process for the next pixel, etc.,
|
|
|
% until it processes all pixels in the image. Results are typically better with
|
|
|
% colorspaces other than sRGB. We recommend YIQ, YUV or YCbCr.
|
|
|
%
|
|
|
% The format of the MeanShiftImage method is:
|
|
|
%
|
|
|
% Image *MeanShiftImage(const Image *image,const size_t width,
|
|
|
% const size_t height,const double color_distance,
|
|
|
% ExceptionInfo *exception)
|
|
|
%
|
|
|
% A description of each parameter follows:
|
|
|
%
|
|
|
% o image: the image.
|
|
|
%
|
|
|
% o width, height: find pixels in this neighborhood.
|
|
|
%
|
|
|
% o color_distance: the color distance.
|
|
|
%
|
|
|
% o exception: return any errors or warnings in this structure.
|
|
|
%
|
|
|
*/
|
|
|
MagickExport Image *MeanShiftImage(const Image *image,const size_t width,
|
|
|
const size_t height,const double color_distance,ExceptionInfo *exception)
|
|
|
{
|
|
|
#define MaxMeanShiftIterations 100
|
|
|
#define MeanShiftImageTag "MeanShift/Image"
|
|
|
|
|
|
CacheView
|
|
|
*image_view,
|
|
|
*mean_view,
|
|
|
*pixel_view;
|
|
|
|
|
|
Image
|
|
|
*mean_image;
|
|
|
|
|
|
MagickBooleanType
|
|
|
status;
|
|
|
|
|
|
MagickOffsetType
|
|
|
progress;
|
|
|
|
|
|
ssize_t
|
|
|
y;
|
|
|
|
|
|
assert(image != (const Image *) NULL);
|
|
|
assert(image->signature == MagickCoreSignature);
|
|
|
if (image->debug != MagickFalse)
|
|
|
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
|
|
|
assert(exception != (ExceptionInfo *) NULL);
|
|
|
assert(exception->signature == MagickCoreSignature);
|
|
|
mean_image=CloneImage(image,0,0,MagickTrue,exception);
|
|
|
if (mean_image == (Image *) NULL)
|
|
|
return((Image *) NULL);
|
|
|
if (SetImageStorageClass(mean_image,DirectClass,exception) == MagickFalse)
|
|
|
{
|
|
|
mean_image=DestroyImage(mean_image);
|
|
|
return((Image *) NULL);
|
|
|
}
|
|
|
status=MagickTrue;
|
|
|
progress=0;
|
|
|
image_view=AcquireVirtualCacheView(image,exception);
|
|
|
pixel_view=AcquireVirtualCacheView(image,exception);
|
|
|
mean_view=AcquireAuthenticCacheView(mean_image,exception);
|
|
|
#if defined(MAGICKCORE_OPENMP_SUPPORT)
|
|
|
#pragma omp parallel for schedule(static) shared(status,progress) \
|
|
|
magick_number_threads(mean_image,mean_image,mean_image->rows,1)
|
|
|
#endif
|
|
|
for (y=0; y < (ssize_t) mean_image->rows; y++)
|
|
|
{
|
|
|
const Quantum
|
|
|
*magick_restrict p;
|
|
|
|
|
|
Quantum
|
|
|
*magick_restrict q;
|
|
|
|
|
|
ssize_t
|
|
|
x;
|
|
|
|
|
|
if (status == MagickFalse)
|
|
|
continue;
|
|
|
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
|
|
|
q=GetCacheViewAuthenticPixels(mean_view,0,y,mean_image->columns,1,
|
|
|
exception);
|
|
|
if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
|
|
|
{
|
|
|
status=MagickFalse;
|
|
|
continue;
|
|
|
}
|
|
|
for (x=0; x < (ssize_t) mean_image->columns; x++)
|
|
|
{
|
|
|
PixelInfo
|
|
|
mean_pixel,
|
|
|
previous_pixel;
|
|
|
|
|
|
PointInfo
|
|
|
mean_location,
|
|
|
previous_location;
|
|
|
|
|
|
ssize_t
|
|
|
i;
|
|
|
|
|
|
GetPixelInfo(image,&mean_pixel);
|
|
|
GetPixelInfoPixel(image,p,&mean_pixel);
|
|
|
mean_location.x=(double) x;
|
|
|
mean_location.y=(double) y;
|
|
|
for (i=0; i < MaxMeanShiftIterations; i++)
|
|
|
{
|
|
|
double
|
|
|
distance,
|
|
|
gamma;
|
|
|
|
|
|
PixelInfo
|
|
|
sum_pixel;
|
|
|
|
|
|
PointInfo
|
|
|
sum_location;
|
|
|
|
|
|
ssize_t
|
|
|
count,
|
|
|
v;
|
|
|
|
|
|
sum_location.x=0.0;
|
|
|
sum_location.y=0.0;
|
|
|
GetPixelInfo(image,&sum_pixel);
|
|
|
previous_location=mean_location;
|
|
|
previous_pixel=mean_pixel;
|
|
|
count=0;
|
|
|
for (v=(-((ssize_t) height/2)); v <= (((ssize_t) height/2)); v++)
|
|
|
{
|
|
|
ssize_t
|
|
|
u;
|
|
|
|
|
|
for (u=(-((ssize_t) width/2)); u <= (((ssize_t) width/2)); u++)
|
|
|
{
|
|
|
if ((v*v+u*u) <= (ssize_t) ((width/2)*(height/2)))
|
|
|
{
|
|
|
PixelInfo
|
|
|
pixel;
|
|
|
|
|
|
status=GetOneCacheViewVirtualPixelInfo(pixel_view,(ssize_t)
|
|
|
MagickRound(mean_location.x+u),(ssize_t) MagickRound(
|
|
|
mean_location.y+v),&pixel,exception);
|
|
|
distance=(mean_pixel.red-pixel.red)*(mean_pixel.red-pixel.red)+
|
|
|
(mean_pixel.green-pixel.green)*(mean_pixel.green-pixel.green)+
|
|
|
(mean_pixel.blue-pixel.blue)*(mean_pixel.blue-pixel.blue);
|
|
|
if (distance <= (color_distance*color_distance))
|
|
|
{
|
|
|
sum_location.x+=mean_location.x+u;
|
|
|
sum_location.y+=mean_location.y+v;
|
|
|
sum_pixel.red+=pixel.red;
|
|
|
sum_pixel.green+=pixel.green;
|
|
|
sum_pixel.blue+=pixel.blue;
|
|
|
sum_pixel.alpha+=pixel.alpha;
|
|
|
count++;
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
gamma=PerceptibleReciprocal(count);
|
|
|
mean_location.x=gamma*sum_location.x;
|
|
|
mean_location.y=gamma*sum_location.y;
|
|
|
mean_pixel.red=gamma*sum_pixel.red;
|
|
|
mean_pixel.green=gamma*sum_pixel.green;
|
|
|
mean_pixel.blue=gamma*sum_pixel.blue;
|
|
|
mean_pixel.alpha=gamma*sum_pixel.alpha;
|
|
|
distance=(mean_location.x-previous_location.x)*
|
|
|
(mean_location.x-previous_location.x)+
|
|
|
(mean_location.y-previous_location.y)*
|
|
|
(mean_location.y-previous_location.y)+
|
|
|
255.0*QuantumScale*(mean_pixel.red-previous_pixel.red)*
|
|
|
255.0*QuantumScale*(mean_pixel.red-previous_pixel.red)+
|
|
|
255.0*QuantumScale*(mean_pixel.green-previous_pixel.green)*
|
|
|
255.0*QuantumScale*(mean_pixel.green-previous_pixel.green)+
|
|
|
255.0*QuantumScale*(mean_pixel.blue-previous_pixel.blue)*
|
|
|
255.0*QuantumScale*(mean_pixel.blue-previous_pixel.blue);
|
|
|
if (distance <= 3.0)
|
|
|
break;
|
|
|
}
|
|
|
SetPixelRed(mean_image,ClampToQuantum(mean_pixel.red),q);
|
|
|
SetPixelGreen(mean_image,ClampToQuantum(mean_pixel.green),q);
|
|
|
SetPixelBlue(mean_image,ClampToQuantum(mean_pixel.blue),q);
|
|
|
SetPixelAlpha(mean_image,ClampToQuantum(mean_pixel.alpha),q);
|
|
|
p+=GetPixelChannels(image);
|
|
|
q+=GetPixelChannels(mean_image);
|
|
|
}
|
|
|
if (SyncCacheViewAuthenticPixels(mean_view,exception) == MagickFalse)
|
|
|
status=MagickFalse;
|
|
|
if (image->progress_monitor != (MagickProgressMonitor) NULL)
|
|
|
{
|
|
|
MagickBooleanType
|
|
|
proceed;
|
|
|
|
|
|
#if defined(MAGICKCORE_OPENMP_SUPPORT)
|
|
|
#pragma omp atomic
|
|
|
#endif
|
|
|
progress++;
|
|
|
proceed=SetImageProgress(image,MeanShiftImageTag,progress,image->rows);
|
|
|
if (proceed == MagickFalse)
|
|
|
status=MagickFalse;
|
|
|
}
|
|
|
}
|
|
|
mean_view=DestroyCacheView(mean_view);
|
|
|
pixel_view=DestroyCacheView(pixel_view);
|
|
|
image_view=DestroyCacheView(image_view);
|
|
|
return(mean_image);
|
|
|
}
|