|
|
/*
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
% %
|
|
|
% %
|
|
|
% %
|
|
|
% SSSSS EEEEE GGGG M M EEEEE N N TTTTT %
|
|
|
% SS E G MM MM E NN N T %
|
|
|
% SSS EEE G GGG M M M EEE N N N T %
|
|
|
% SS E G G M M E N NN T %
|
|
|
% SSSSS EEEEE GGGG M M EEEEE N N T %
|
|
|
% %
|
|
|
% %
|
|
|
% MagickCore Methods to Segment an Image with Thresholding Fuzzy c-Means %
|
|
|
% %
|
|
|
% Software Design %
|
|
|
% Cristy %
|
|
|
% April 1993 %
|
|
|
% %
|
|
|
% %
|
|
|
% Copyright 1999-2021 ImageMagick Studio LLC, a non-profit organization %
|
|
|
% dedicated to making software imaging solutions freely available. %
|
|
|
% %
|
|
|
% You may not use this file except in compliance with the License. You may %
|
|
|
% obtain a copy of the License at %
|
|
|
% %
|
|
|
% https://imagemagick.org/script/license.php %
|
|
|
% %
|
|
|
% Unless required by applicable law or agreed to in writing, software %
|
|
|
% distributed under the License is distributed on an "AS IS" BASIS, %
|
|
|
% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
|
|
|
% See the License for the specific language governing permissions and %
|
|
|
% limitations under the License. %
|
|
|
% %
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
%
|
|
|
% Segment segments an image by analyzing the histograms of the color
|
|
|
% components and identifying units that are homogeneous with the fuzzy
|
|
|
% c-means technique. The scale-space filter analyzes the histograms of
|
|
|
% the three color components of the image and identifies a set of
|
|
|
% classes. The extents of each class is used to coarsely segment the
|
|
|
% image with thresholding. The color associated with each class is
|
|
|
% determined by the mean color of all pixels within the extents of a
|
|
|
% particular class. Finally, any unclassified pixels are assigned to
|
|
|
% the closest class with the fuzzy c-means technique.
|
|
|
%
|
|
|
% The fuzzy c-Means algorithm can be summarized as follows:
|
|
|
%
|
|
|
% o Build a histogram, one for each color component of the image.
|
|
|
%
|
|
|
% o For each histogram, successively apply the scale-space filter and
|
|
|
% build an interval tree of zero crossings in the second derivative
|
|
|
% at each scale. Analyze this scale-space ''fingerprint'' to
|
|
|
% determine which peaks and valleys in the histogram are most
|
|
|
% predominant.
|
|
|
%
|
|
|
% o The fingerprint defines intervals on the axis of the histogram.
|
|
|
% Each interval contains either a minima or a maxima in the original
|
|
|
% signal. If each color component lies within the maxima interval,
|
|
|
% that pixel is considered ''classified'' and is assigned an unique
|
|
|
% class number.
|
|
|
%
|
|
|
% o Any pixel that fails to be classified in the above thresholding
|
|
|
% pass is classified using the fuzzy c-Means technique. It is
|
|
|
% assigned to one of the classes discovered in the histogram analysis
|
|
|
% phase.
|
|
|
%
|
|
|
% The fuzzy c-Means technique attempts to cluster a pixel by finding
|
|
|
% the local minima of the generalized within group sum of squared error
|
|
|
% objective function. A pixel is assigned to the closest class of
|
|
|
% which the fuzzy membership has a maximum value.
|
|
|
%
|
|
|
% Segment is strongly based on software written by Andy Gallo,
|
|
|
% University of Delaware.
|
|
|
%
|
|
|
% The following reference was used in creating this program:
|
|
|
%
|
|
|
% Young Won Lim, Sang Uk Lee, "On The Color Image Segmentation
|
|
|
% Algorithm Based on the Thresholding and the Fuzzy c-Means
|
|
|
% Techniques", Pattern Recognition, Volume 23, Number 9, pages
|
|
|
% 935-952, 1990.
|
|
|
%
|
|
|
%
|
|
|
*/
|
|
|
|
|
|
#include "MagickCore/studio.h"
|
|
|
#include "MagickCore/cache.h"
|
|
|
#include "MagickCore/color.h"
|
|
|
#include "MagickCore/colormap.h"
|
|
|
#include "MagickCore/colorspace.h"
|
|
|
#include "MagickCore/colorspace-private.h"
|
|
|
#include "MagickCore/exception.h"
|
|
|
#include "MagickCore/exception-private.h"
|
|
|
#include "MagickCore/image.h"
|
|
|
#include "MagickCore/image-private.h"
|
|
|
#include "MagickCore/memory_.h"
|
|
|
#include "MagickCore/memory-private.h"
|
|
|
#include "MagickCore/monitor.h"
|
|
|
#include "MagickCore/monitor-private.h"
|
|
|
#include "MagickCore/pixel-accessor.h"
|
|
|
#include "MagickCore/pixel-private.h"
|
|
|
#include "MagickCore/quantize.h"
|
|
|
#include "MagickCore/quantum.h"
|
|
|
#include "MagickCore/quantum-private.h"
|
|
|
#include "MagickCore/resource_.h"
|
|
|
#include "MagickCore/segment.h"
|
|
|
#include "MagickCore/string_.h"
|
|
|
#include "MagickCore/thread-private.h"
|
|
|
|
|
|
/*
|
|
|
Define declarations.
|
|
|
*/
|
|
|
#define MaxDimension 3
|
|
|
#define DeltaTau 0.5f
|
|
|
#if defined(FastClassify)
|
|
|
#define WeightingExponent 2.0
|
|
|
#define SegmentPower(ratio) (ratio)
|
|
|
#else
|
|
|
#define WeightingExponent 2.5
|
|
|
#define SegmentPower(ratio) pow(ratio,(double) (1.0/(weighting_exponent-1.0)));
|
|
|
#endif
|
|
|
#define Tau 5.2f
|
|
|
|
|
|
/*
|
|
|
Typedef declarations.
|
|
|
*/
|
|
|
typedef struct _ExtentPacket
|
|
|
{
|
|
|
double
|
|
|
center;
|
|
|
|
|
|
ssize_t
|
|
|
index,
|
|
|
left,
|
|
|
right;
|
|
|
} ExtentPacket;
|
|
|
|
|
|
typedef struct _Cluster
|
|
|
{
|
|
|
struct _Cluster
|
|
|
*next;
|
|
|
|
|
|
ExtentPacket
|
|
|
red,
|
|
|
green,
|
|
|
blue;
|
|
|
|
|
|
ssize_t
|
|
|
count,
|
|
|
id;
|
|
|
} Cluster;
|
|
|
|
|
|
typedef struct _IntervalTree
|
|
|
{
|
|
|
double
|
|
|
tau;
|
|
|
|
|
|
ssize_t
|
|
|
left,
|
|
|
right;
|
|
|
|
|
|
double
|
|
|
mean_stability,
|
|
|
stability;
|
|
|
|
|
|
struct _IntervalTree
|
|
|
*sibling,
|
|
|
*child;
|
|
|
} IntervalTree;
|
|
|
|
|
|
typedef struct _ZeroCrossing
|
|
|
{
|
|
|
double
|
|
|
tau,
|
|
|
histogram[256];
|
|
|
|
|
|
short
|
|
|
crossings[256];
|
|
|
} ZeroCrossing;
|
|
|
|
|
|
/*
|
|
|
Constant declarations.
|
|
|
*/
|
|
|
static const int
|
|
|
Blue = 2,
|
|
|
Green = 1,
|
|
|
Red = 0,
|
|
|
SafeMargin = 3,
|
|
|
TreeLength = 600;
|
|
|
|
|
|
/*
|
|
|
Method prototypes.
|
|
|
*/
|
|
|
static double
|
|
|
OptimalTau(const ssize_t *,const double,const double,const double,
|
|
|
const double,short *);
|
|
|
|
|
|
static ssize_t
|
|
|
DefineRegion(const short *,ExtentPacket *);
|
|
|
|
|
|
static void
|
|
|
FreeNodes(IntervalTree *),
|
|
|
InitializeHistogram(const Image *,ssize_t **,ExceptionInfo *),
|
|
|
ScaleSpace(const ssize_t *,const double,double *),
|
|
|
ZeroCrossHistogram(double *,const double,short *);
|
|
|
|
|
|
/*
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
% %
|
|
|
% %
|
|
|
% %
|
|
|
+ C l a s s i f y %
|
|
|
% %
|
|
|
% %
|
|
|
% %
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
%
|
|
|
% Classify() defines one or more classes. Each pixel is thresholded to
|
|
|
% determine which class it belongs to. If the class is not identified it is
|
|
|
% assigned to the closest class based on the fuzzy c-Means technique.
|
|
|
%
|
|
|
% The format of the Classify method is:
|
|
|
%
|
|
|
% MagickBooleanType Classify(Image *image,short **extrema,
|
|
|
% const double cluster_threshold,const double weighting_exponent,
|
|
|
% const MagickBooleanType verbose,ExceptionInfo *exception)
|
|
|
%
|
|
|
% A description of each parameter follows.
|
|
|
%
|
|
|
% o image: the image.
|
|
|
%
|
|
|
% o extrema: Specifies a pointer to an array of integers. They
|
|
|
% represent the peaks and valleys of the histogram for each color
|
|
|
% component.
|
|
|
%
|
|
|
% o cluster_threshold: This double represents the minimum number of
|
|
|
% pixels contained in a hexahedra before it can be considered valid
|
|
|
% (expressed as a percentage).
|
|
|
%
|
|
|
% o weighting_exponent: Specifies the membership weighting exponent.
|
|
|
%
|
|
|
% o verbose: A value greater than zero prints detailed information about
|
|
|
% the identified classes.
|
|
|
%
|
|
|
% o exception: return any errors or warnings in this structure.
|
|
|
%
|
|
|
*/
|
|
|
static MagickBooleanType Classify(Image *image,short **extrema,
|
|
|
const double cluster_threshold,const double weighting_exponent,
|
|
|
const MagickBooleanType verbose,ExceptionInfo *exception)
|
|
|
{
|
|
|
#define SegmentImageTag "Segment/Image"
|
|
|
#define ThrowClassifyException(severity,tag,label) \
|
|
|
{\
|
|
|
for (cluster=head; cluster != (Cluster *) NULL; cluster=next_cluster) \
|
|
|
{ \
|
|
|
next_cluster=cluster->next; \
|
|
|
cluster=(Cluster *) RelinquishMagickMemory(cluster); \
|
|
|
} \
|
|
|
if (squares != (double *) NULL) \
|
|
|
{ \
|
|
|
squares-=255; \
|
|
|
free_squares=squares; \
|
|
|
free_squares=(double *) RelinquishMagickMemory(free_squares); \
|
|
|
} \
|
|
|
ThrowBinaryException(severity,tag,label); \
|
|
|
}
|
|
|
|
|
|
CacheView
|
|
|
*image_view;
|
|
|
|
|
|
Cluster
|
|
|
*cluster,
|
|
|
*head,
|
|
|
*last_cluster,
|
|
|
*next_cluster;
|
|
|
|
|
|
double
|
|
|
*free_squares;
|
|
|
|
|
|
ExtentPacket
|
|
|
blue,
|
|
|
green,
|
|
|
red;
|
|
|
|
|
|
MagickOffsetType
|
|
|
progress;
|
|
|
|
|
|
MagickStatusType
|
|
|
status;
|
|
|
|
|
|
ssize_t
|
|
|
i;
|
|
|
|
|
|
double
|
|
|
*squares;
|
|
|
|
|
|
size_t
|
|
|
number_clusters;
|
|
|
|
|
|
ssize_t
|
|
|
count,
|
|
|
y;
|
|
|
|
|
|
/*
|
|
|
Form clusters.
|
|
|
*/
|
|
|
cluster=(Cluster *) NULL;
|
|
|
head=(Cluster *) NULL;
|
|
|
squares=(double *) NULL;
|
|
|
(void) memset(&red,0,sizeof(red));
|
|
|
(void) memset(&green,0,sizeof(green));
|
|
|
(void) memset(&blue,0,sizeof(blue));
|
|
|
while (DefineRegion(extrema[Red],&red) != 0)
|
|
|
{
|
|
|
green.index=0;
|
|
|
while (DefineRegion(extrema[Green],&green) != 0)
|
|
|
{
|
|
|
blue.index=0;
|
|
|
while (DefineRegion(extrema[Blue],&blue) != 0)
|
|
|
{
|
|
|
/*
|
|
|
Allocate a new class.
|
|
|
*/
|
|
|
if (head != (Cluster *) NULL)
|
|
|
{
|
|
|
cluster->next=(Cluster *) AcquireQuantumMemory(1,
|
|
|
sizeof(*cluster->next));
|
|
|
cluster=cluster->next;
|
|
|
}
|
|
|
else
|
|
|
{
|
|
|
cluster=(Cluster *) AcquireQuantumMemory(1,sizeof(*cluster));
|
|
|
head=cluster;
|
|
|
}
|
|
|
if (cluster == (Cluster *) NULL)
|
|
|
ThrowClassifyException(ResourceLimitError,"MemoryAllocationFailed",
|
|
|
image->filename);
|
|
|
/*
|
|
|
Initialize a new class.
|
|
|
*/
|
|
|
(void) memset(cluster,0,sizeof(*cluster));
|
|
|
cluster->red=red;
|
|
|
cluster->green=green;
|
|
|
cluster->blue=blue;
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
if (head == (Cluster *) NULL)
|
|
|
{
|
|
|
/*
|
|
|
No classes were identified-- create one.
|
|
|
*/
|
|
|
cluster=(Cluster *) AcquireQuantumMemory(1,sizeof(*cluster));
|
|
|
if (cluster == (Cluster *) NULL)
|
|
|
ThrowClassifyException(ResourceLimitError,"MemoryAllocationFailed",
|
|
|
image->filename);
|
|
|
/*
|
|
|
Initialize a new class.
|
|
|
*/
|
|
|
(void) memset(cluster,0,sizeof(*cluster));
|
|
|
cluster->red=red;
|
|
|
cluster->green=green;
|
|
|
cluster->blue=blue;
|
|
|
head=cluster;
|
|
|
}
|
|
|
/*
|
|
|
Count the pixels for each cluster.
|
|
|
*/
|
|
|
status=MagickTrue;
|
|
|
count=0;
|
|
|
progress=0;
|
|
|
image_view=AcquireVirtualCacheView(image,exception);
|
|
|
for (y=0; y < (ssize_t) image->rows; y++)
|
|
|
{
|
|
|
const Quantum
|
|
|
*p;
|
|
|
|
|
|
ssize_t
|
|
|
x;
|
|
|
|
|
|
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
|
|
|
if (p == (const Quantum *) NULL)
|
|
|
break;
|
|
|
for (x=0; x < (ssize_t) image->columns; x++)
|
|
|
{
|
|
|
PixelInfo
|
|
|
pixel;
|
|
|
|
|
|
pixel.red=(double) ScaleQuantumToChar(GetPixelRed(image,p));
|
|
|
pixel.green=(double) ScaleQuantumToChar(GetPixelGreen(image,p));
|
|
|
pixel.blue=(double) ScaleQuantumToChar(GetPixelBlue(image,p));
|
|
|
for (cluster=head; cluster != (Cluster *) NULL; cluster=cluster->next)
|
|
|
if ((pixel.red >= (double) (cluster->red.left-SafeMargin)) &&
|
|
|
(pixel.red <= (double) (cluster->red.right+SafeMargin)) &&
|
|
|
(pixel.green >= (double) (cluster->green.left-SafeMargin)) &&
|
|
|
(pixel.green <= (double) (cluster->green.right+SafeMargin)) &&
|
|
|
(pixel.blue >= (double) (cluster->blue.left-SafeMargin)) &&
|
|
|
(pixel.blue <= (double) (cluster->blue.right+SafeMargin)))
|
|
|
{
|
|
|
/*
|
|
|
Count this pixel.
|
|
|
*/
|
|
|
count++;
|
|
|
cluster->red.center+=pixel.red;
|
|
|
cluster->green.center+=pixel.green;
|
|
|
cluster->blue.center+=pixel.blue;
|
|
|
cluster->count++;
|
|
|
break;
|
|
|
}
|
|
|
p+=GetPixelChannels(image);
|
|
|
}
|
|
|
if (image->progress_monitor != (MagickProgressMonitor) NULL)
|
|
|
{
|
|
|
MagickBooleanType
|
|
|
proceed;
|
|
|
|
|
|
#if defined(MAGICKCORE_OPENMP_SUPPORT)
|
|
|
#pragma omp atomic
|
|
|
#endif
|
|
|
progress++;
|
|
|
proceed=SetImageProgress(image,SegmentImageTag,progress,2*image->rows);
|
|
|
if (proceed == MagickFalse)
|
|
|
status=MagickFalse;
|
|
|
}
|
|
|
}
|
|
|
image_view=DestroyCacheView(image_view);
|
|
|
/*
|
|
|
Remove clusters that do not meet minimum cluster threshold.
|
|
|
*/
|
|
|
count=0;
|
|
|
last_cluster=head;
|
|
|
next_cluster=head;
|
|
|
for (cluster=head; cluster != (Cluster *) NULL; cluster=next_cluster)
|
|
|
{
|
|
|
next_cluster=cluster->next;
|
|
|
if ((cluster->count > 0) &&
|
|
|
(cluster->count >= (count*cluster_threshold/100.0)))
|
|
|
{
|
|
|
/*
|
|
|
Initialize cluster.
|
|
|
*/
|
|
|
cluster->id=count;
|
|
|
cluster->red.center/=cluster->count;
|
|
|
cluster->green.center/=cluster->count;
|
|
|
cluster->blue.center/=cluster->count;
|
|
|
count++;
|
|
|
last_cluster=cluster;
|
|
|
continue;
|
|
|
}
|
|
|
/*
|
|
|
Delete cluster.
|
|
|
*/
|
|
|
if (cluster == head)
|
|
|
head=next_cluster;
|
|
|
else
|
|
|
last_cluster->next=next_cluster;
|
|
|
cluster=(Cluster *) RelinquishMagickMemory(cluster);
|
|
|
}
|
|
|
number_clusters=(size_t) count;
|
|
|
if (verbose != MagickFalse)
|
|
|
{
|
|
|
/*
|
|
|
Print cluster statistics.
|
|
|
*/
|
|
|
(void) FormatLocaleFile(stdout,"Fuzzy C-means Statistics\n");
|
|
|
(void) FormatLocaleFile(stdout,"===================\n\n");
|
|
|
(void) FormatLocaleFile(stdout,"\tCluster Threshold = %g\n",(double)
|
|
|
cluster_threshold);
|
|
|
(void) FormatLocaleFile(stdout,"\tWeighting Exponent = %g\n",(double)
|
|
|
weighting_exponent);
|
|
|
(void) FormatLocaleFile(stdout,"\tTotal Number of Clusters = %.20g\n\n",
|
|
|
(double) number_clusters);
|
|
|
/*
|
|
|
Print the total number of points per cluster.
|
|
|
*/
|
|
|
(void) FormatLocaleFile(stdout,"\n\nNumber of Vectors Per Cluster\n");
|
|
|
(void) FormatLocaleFile(stdout,"=============================\n\n");
|
|
|
for (cluster=head; cluster != (Cluster *) NULL; cluster=cluster->next)
|
|
|
(void) FormatLocaleFile(stdout,"Cluster #%.20g = %.20g\n",(double)
|
|
|
cluster->id,(double) cluster->count);
|
|
|
/*
|
|
|
Print the cluster extents.
|
|
|
*/
|
|
|
(void) FormatLocaleFile(stdout,
|
|
|
"\n\n\nCluster Extents: (Vector Size: %d)\n",MaxDimension);
|
|
|
(void) FormatLocaleFile(stdout,"================");
|
|
|
for (cluster=head; cluster != (Cluster *) NULL; cluster=cluster->next)
|
|
|
{
|
|
|
(void) FormatLocaleFile(stdout,"\n\nCluster #%.20g\n\n",(double)
|
|
|
cluster->id);
|
|
|
(void) FormatLocaleFile(stdout,
|
|
|
"%.20g-%.20g %.20g-%.20g %.20g-%.20g\n",(double)
|
|
|
cluster->red.left,(double) cluster->red.right,(double)
|
|
|
cluster->green.left,(double) cluster->green.right,(double)
|
|
|
cluster->blue.left,(double) cluster->blue.right);
|
|
|
}
|
|
|
/*
|
|
|
Print the cluster center values.
|
|
|
*/
|
|
|
(void) FormatLocaleFile(stdout,
|
|
|
"\n\n\nCluster Center Values: (Vector Size: %d)\n",MaxDimension);
|
|
|
(void) FormatLocaleFile(stdout,"=====================");
|
|
|
for (cluster=head; cluster != (Cluster *) NULL; cluster=cluster->next)
|
|
|
{
|
|
|
(void) FormatLocaleFile(stdout,"\n\nCluster #%.20g\n\n",(double)
|
|
|
cluster->id);
|
|
|
(void) FormatLocaleFile(stdout,"%g %g %g\n",(double)
|
|
|
cluster->red.center,(double) cluster->green.center,(double)
|
|
|
cluster->blue.center);
|
|
|
}
|
|
|
(void) FormatLocaleFile(stdout,"\n");
|
|
|
}
|
|
|
if (number_clusters > 256)
|
|
|
ThrowClassifyException(ImageError,"TooManyClusters",image->filename);
|
|
|
/*
|
|
|
Speed up distance calculations.
|
|
|
*/
|
|
|
squares=(double *) AcquireQuantumMemory(513UL,sizeof(*squares));
|
|
|
if (squares == (double *) NULL)
|
|
|
ThrowClassifyException(ResourceLimitError,"MemoryAllocationFailed",
|
|
|
image->filename);
|
|
|
squares+=255;
|
|
|
for (i=(-255); i <= 255; i++)
|
|
|
squares[i]=(double) i*(double) i;
|
|
|
/*
|
|
|
Allocate image colormap.
|
|
|
*/
|
|
|
if (AcquireImageColormap(image,number_clusters,exception) == MagickFalse)
|
|
|
ThrowClassifyException(ResourceLimitError,"MemoryAllocationFailed",
|
|
|
image->filename);
|
|
|
i=0;
|
|
|
for (cluster=head; cluster != (Cluster *) NULL; cluster=cluster->next)
|
|
|
{
|
|
|
image->colormap[i].red=(double) ScaleCharToQuantum((unsigned char)
|
|
|
(cluster->red.center+0.5));
|
|
|
image->colormap[i].green=(double) ScaleCharToQuantum((unsigned char)
|
|
|
(cluster->green.center+0.5));
|
|
|
image->colormap[i].blue=(double) ScaleCharToQuantum((unsigned char)
|
|
|
(cluster->blue.center+0.5));
|
|
|
i++;
|
|
|
}
|
|
|
/*
|
|
|
Do course grain classes.
|
|
|
*/
|
|
|
image_view=AcquireAuthenticCacheView(image,exception);
|
|
|
#if defined(MAGICKCORE_OPENMP_SUPPORT)
|
|
|
#pragma omp parallel for schedule(static) shared(progress,status) \
|
|
|
magick_number_threads(image,image,image->rows,1)
|
|
|
#endif
|
|
|
for (y=0; y < (ssize_t) image->rows; y++)
|
|
|
{
|
|
|
Cluster
|
|
|
*cluster;
|
|
|
|
|
|
const PixelInfo
|
|
|
*magick_restrict p;
|
|
|
|
|
|
ssize_t
|
|
|
x;
|
|
|
|
|
|
Quantum
|
|
|
*magick_restrict q;
|
|
|
|
|
|
if (status == MagickFalse)
|
|
|
continue;
|
|
|
q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
|
|
|
if (q == (Quantum *) NULL)
|
|
|
{
|
|
|
status=MagickFalse;
|
|
|
continue;
|
|
|
}
|
|
|
for (x=0; x < (ssize_t) image->columns; x++)
|
|
|
{
|
|
|
PixelInfo
|
|
|
pixel;
|
|
|
|
|
|
SetPixelIndex(image,(Quantum) 0,q);
|
|
|
pixel.red=(double) ScaleQuantumToChar(GetPixelRed(image,q));
|
|
|
pixel.green=(double) ScaleQuantumToChar(GetPixelGreen(image,q));
|
|
|
pixel.blue=(double) ScaleQuantumToChar(GetPixelBlue(image,q));
|
|
|
for (cluster=head; cluster != (Cluster *) NULL; cluster=cluster->next)
|
|
|
{
|
|
|
if ((pixel.red >= (double) (cluster->red.left-SafeMargin)) &&
|
|
|
(pixel.red <= (double) (cluster->red.right+SafeMargin)) &&
|
|
|
(pixel.green >= (double) (cluster->green.left-SafeMargin)) &&
|
|
|
(pixel.green <= (double) (cluster->green.right+SafeMargin)) &&
|
|
|
(pixel.blue >= (double) (cluster->blue.left-SafeMargin)) &&
|
|
|
(pixel.blue <= (double) (cluster->blue.right+SafeMargin)))
|
|
|
{
|
|
|
/*
|
|
|
Classify this pixel.
|
|
|
*/
|
|
|
SetPixelIndex(image,(Quantum) cluster->id,q);
|
|
|
break;
|
|
|
}
|
|
|
}
|
|
|
if (cluster == (Cluster *) NULL)
|
|
|
{
|
|
|
double
|
|
|
distance_squared,
|
|
|
local_minima,
|
|
|
numerator,
|
|
|
ratio,
|
|
|
sum;
|
|
|
|
|
|
ssize_t
|
|
|
j,
|
|
|
k;
|
|
|
|
|
|
/*
|
|
|
Compute fuzzy membership.
|
|
|
*/
|
|
|
local_minima=0.0;
|
|
|
for (j=0; j < (ssize_t) image->colors; j++)
|
|
|
{
|
|
|
sum=0.0;
|
|
|
p=image->colormap+j;
|
|
|
distance_squared=
|
|
|
squares[(ssize_t) (pixel.red-ScaleQuantumToChar(p->red))]+
|
|
|
squares[(ssize_t) (pixel.green-ScaleQuantumToChar(p->green))]+
|
|
|
squares[(ssize_t) (pixel.blue-ScaleQuantumToChar(p->blue))];
|
|
|
numerator=distance_squared;
|
|
|
for (k=0; k < (ssize_t) image->colors; k++)
|
|
|
{
|
|
|
p=image->colormap+k;
|
|
|
distance_squared=
|
|
|
squares[(ssize_t) (pixel.red-ScaleQuantumToChar(p->red))]+
|
|
|
squares[(ssize_t) (pixel.green-ScaleQuantumToChar(p->green))]+
|
|
|
squares[(ssize_t) (pixel.blue-ScaleQuantumToChar(p->blue))];
|
|
|
ratio=numerator/distance_squared;
|
|
|
sum+=SegmentPower(ratio);
|
|
|
}
|
|
|
if ((sum != 0.0) && ((1.0/sum) > local_minima))
|
|
|
{
|
|
|
/*
|
|
|
Classify this pixel.
|
|
|
*/
|
|
|
local_minima=1.0/sum;
|
|
|
SetPixelIndex(image,(Quantum) j,q);
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
q+=GetPixelChannels(image);
|
|
|
}
|
|
|
if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
|
|
|
status=MagickFalse;
|
|
|
if (image->progress_monitor != (MagickProgressMonitor) NULL)
|
|
|
{
|
|
|
MagickBooleanType
|
|
|
proceed;
|
|
|
|
|
|
#if defined(MAGICKCORE_OPENMP_SUPPORT)
|
|
|
#pragma omp atomic
|
|
|
#endif
|
|
|
progress++;
|
|
|
proceed=SetImageProgress(image,SegmentImageTag,progress,2*image->rows);
|
|
|
if (proceed == MagickFalse)
|
|
|
status=MagickFalse;
|
|
|
}
|
|
|
}
|
|
|
image_view=DestroyCacheView(image_view);
|
|
|
status&=SyncImage(image,exception);
|
|
|
/*
|
|
|
Relinquish resources.
|
|
|
*/
|
|
|
for (cluster=head; cluster != (Cluster *) NULL; cluster=next_cluster)
|
|
|
{
|
|
|
next_cluster=cluster->next;
|
|
|
cluster=(Cluster *) RelinquishMagickMemory(cluster);
|
|
|
}
|
|
|
squares-=255;
|
|
|
free_squares=squares;
|
|
|
free_squares=(double *) RelinquishMagickMemory(free_squares);
|
|
|
return(MagickTrue);
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
% %
|
|
|
% %
|
|
|
% %
|
|
|
+ C o n s o l i d a t e C r o s s i n g s %
|
|
|
% %
|
|
|
% %
|
|
|
% %
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
%
|
|
|
% ConsolidateCrossings() guarantees that an even number of zero crossings
|
|
|
% always lie between two crossings.
|
|
|
%
|
|
|
% The format of the ConsolidateCrossings method is:
|
|
|
%
|
|
|
% ConsolidateCrossings(ZeroCrossing *zero_crossing,
|
|
|
% const size_t number_crossings)
|
|
|
%
|
|
|
% A description of each parameter follows.
|
|
|
%
|
|
|
% o zero_crossing: Specifies an array of structures of type ZeroCrossing.
|
|
|
%
|
|
|
% o number_crossings: This size_t specifies the number of elements
|
|
|
% in the zero_crossing array.
|
|
|
%
|
|
|
*/
|
|
|
static void ConsolidateCrossings(ZeroCrossing *zero_crossing,
|
|
|
const size_t number_crossings)
|
|
|
{
|
|
|
ssize_t
|
|
|
i,
|
|
|
j,
|
|
|
k,
|
|
|
l;
|
|
|
|
|
|
ssize_t
|
|
|
center,
|
|
|
correct,
|
|
|
count,
|
|
|
left,
|
|
|
right;
|
|
|
|
|
|
/*
|
|
|
Consolidate zero crossings.
|
|
|
*/
|
|
|
for (i=(ssize_t) number_crossings-1; i >= 0; i--)
|
|
|
for (j=0; j <= 255; j++)
|
|
|
{
|
|
|
if (zero_crossing[i].crossings[j] == 0)
|
|
|
continue;
|
|
|
/*
|
|
|
Find the entry that is closest to j and still preserves the
|
|
|
property that there are an even number of crossings between
|
|
|
intervals.
|
|
|
*/
|
|
|
for (k=j-1; k > 0; k--)
|
|
|
if (zero_crossing[i+1].crossings[k] != 0)
|
|
|
break;
|
|
|
left=MagickMax(k,0);
|
|
|
center=j;
|
|
|
for (k=j+1; k < 255; k++)
|
|
|
if (zero_crossing[i+1].crossings[k] != 0)
|
|
|
break;
|
|
|
right=MagickMin(k,255);
|
|
|
/*
|
|
|
K is the zero crossing just left of j.
|
|
|
*/
|
|
|
for (k=j-1; k > 0; k--)
|
|
|
if (zero_crossing[i].crossings[k] != 0)
|
|
|
break;
|
|
|
if (k < 0)
|
|
|
k=0;
|
|
|
/*
|
|
|
Check center for an even number of crossings between k and j.
|
|
|
*/
|
|
|
correct=(-1);
|
|
|
if (zero_crossing[i+1].crossings[j] != 0)
|
|
|
{
|
|
|
count=0;
|
|
|
for (l=k+1; l < center; l++)
|
|
|
if (zero_crossing[i+1].crossings[l] != 0)
|
|
|
count++;
|
|
|
if (((count % 2) == 0) && (center != k))
|
|
|
correct=center;
|
|
|
}
|
|
|
/*
|
|
|
Check left for an even number of crossings between k and j.
|
|
|
*/
|
|
|
if (correct == -1)
|
|
|
{
|
|
|
count=0;
|
|
|
for (l=k+1; l < left; l++)
|
|
|
if (zero_crossing[i+1].crossings[l] != 0)
|
|
|
count++;
|
|
|
if (((count % 2) == 0) && (left != k))
|
|
|
correct=left;
|
|
|
}
|
|
|
/*
|
|
|
Check right for an even number of crossings between k and j.
|
|
|
*/
|
|
|
if (correct == -1)
|
|
|
{
|
|
|
count=0;
|
|
|
for (l=k+1; l < right; l++)
|
|
|
if (zero_crossing[i+1].crossings[l] != 0)
|
|
|
count++;
|
|
|
if (((count % 2) == 0) && (right != k))
|
|
|
correct=right;
|
|
|
}
|
|
|
l=(ssize_t) zero_crossing[i].crossings[j];
|
|
|
zero_crossing[i].crossings[j]=0;
|
|
|
if (correct != -1)
|
|
|
zero_crossing[i].crossings[correct]=(short) l;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
% %
|
|
|
% %
|
|
|
% %
|
|
|
+ D e f i n e R e g i o n %
|
|
|
% %
|
|
|
% %
|
|
|
% %
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
%
|
|
|
% DefineRegion() defines the left and right boundaries of a peak region.
|
|
|
%
|
|
|
% The format of the DefineRegion method is:
|
|
|
%
|
|
|
% ssize_t DefineRegion(const short *extrema,ExtentPacket *extents)
|
|
|
%
|
|
|
% A description of each parameter follows.
|
|
|
%
|
|
|
% o extrema: Specifies a pointer to an array of integers. They
|
|
|
% represent the peaks and valleys of the histogram for each color
|
|
|
% component.
|
|
|
%
|
|
|
% o extents: This pointer to an ExtentPacket represent the extends
|
|
|
% of a particular peak or valley of a color component.
|
|
|
%
|
|
|
*/
|
|
|
static ssize_t DefineRegion(const short *extrema,ExtentPacket *extents)
|
|
|
{
|
|
|
/*
|
|
|
Initialize to default values.
|
|
|
*/
|
|
|
extents->left=0;
|
|
|
extents->center=0.0;
|
|
|
extents->right=255;
|
|
|
/*
|
|
|
Find the left side (maxima).
|
|
|
*/
|
|
|
for ( ; extents->index <= 255; extents->index++)
|
|
|
if (extrema[extents->index] > 0)
|
|
|
break;
|
|
|
if (extents->index > 255)
|
|
|
return(MagickFalse); /* no left side - no region exists */
|
|
|
extents->left=extents->index;
|
|
|
/*
|
|
|
Find the right side (minima).
|
|
|
*/
|
|
|
for ( ; extents->index <= 255; extents->index++)
|
|
|
if (extrema[extents->index] < 0)
|
|
|
break;
|
|
|
extents->right=extents->index-1;
|
|
|
return(MagickTrue);
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
% %
|
|
|
% %
|
|
|
% %
|
|
|
+ D e r i v a t i v e H i s t o g r a m %
|
|
|
% %
|
|
|
% %
|
|
|
% %
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
%
|
|
|
% DerivativeHistogram() determines the derivative of the histogram using
|
|
|
% central differencing.
|
|
|
%
|
|
|
% The format of the DerivativeHistogram method is:
|
|
|
%
|
|
|
% DerivativeHistogram(const double *histogram,
|
|
|
% double *derivative)
|
|
|
%
|
|
|
% A description of each parameter follows.
|
|
|
%
|
|
|
% o histogram: Specifies an array of doubles representing the number
|
|
|
% of pixels for each intensity of a particular color component.
|
|
|
%
|
|
|
% o derivative: This array of doubles is initialized by
|
|
|
% DerivativeHistogram to the derivative of the histogram using central
|
|
|
% differencing.
|
|
|
%
|
|
|
*/
|
|
|
static void DerivativeHistogram(const double *histogram,
|
|
|
double *derivative)
|
|
|
{
|
|
|
ssize_t
|
|
|
i,
|
|
|
n;
|
|
|
|
|
|
/*
|
|
|
Compute endpoints using second order polynomial interpolation.
|
|
|
*/
|
|
|
n=255;
|
|
|
derivative[0]=(-1.5*histogram[0]+2.0*histogram[1]-0.5*histogram[2]);
|
|
|
derivative[n]=(0.5*histogram[n-2]-2.0*histogram[n-1]+1.5*histogram[n]);
|
|
|
/*
|
|
|
Compute derivative using central differencing.
|
|
|
*/
|
|
|
for (i=1; i < n; i++)
|
|
|
derivative[i]=(histogram[i+1]-histogram[i-1])/2.0;
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
% %
|
|
|
% %
|
|
|
% %
|
|
|
+ G e t I m a g e D y n a m i c T h r e s h o l d %
|
|
|
% %
|
|
|
% %
|
|
|
% %
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
%
|
|
|
% GetImageDynamicThreshold() returns the dynamic threshold for an image.
|
|
|
%
|
|
|
% The format of the GetImageDynamicThreshold method is:
|
|
|
%
|
|
|
% MagickBooleanType GetImageDynamicThreshold(const Image *image,
|
|
|
% const double cluster_threshold,const double smooth_threshold,
|
|
|
% PixelInfo *pixel,ExceptionInfo *exception)
|
|
|
%
|
|
|
% A description of each parameter follows.
|
|
|
%
|
|
|
% o image: the image.
|
|
|
%
|
|
|
% o cluster_threshold: This double represents the minimum number of
|
|
|
% pixels contained in a hexahedra before it can be considered valid
|
|
|
% (expressed as a percentage).
|
|
|
%
|
|
|
% o smooth_threshold: the smoothing threshold eliminates noise in the second
|
|
|
% derivative of the histogram. As the value is increased, you can expect a
|
|
|
% smoother second derivative.
|
|
|
%
|
|
|
% o pixel: return the dynamic threshold here.
|
|
|
%
|
|
|
% o exception: return any errors or warnings in this structure.
|
|
|
%
|
|
|
*/
|
|
|
MagickExport MagickBooleanType GetImageDynamicThreshold(const Image *image,
|
|
|
const double cluster_threshold,const double smooth_threshold,
|
|
|
PixelInfo *pixel,ExceptionInfo *exception)
|
|
|
{
|
|
|
Cluster
|
|
|
*background,
|
|
|
*cluster,
|
|
|
*object,
|
|
|
*head,
|
|
|
*last_cluster,
|
|
|
*next_cluster;
|
|
|
|
|
|
ExtentPacket
|
|
|
blue,
|
|
|
green,
|
|
|
red;
|
|
|
|
|
|
MagickBooleanType
|
|
|
proceed;
|
|
|
|
|
|
double
|
|
|
threshold;
|
|
|
|
|
|
const Quantum
|
|
|
*p;
|
|
|
|
|
|
ssize_t
|
|
|
i,
|
|
|
x;
|
|
|
|
|
|
short
|
|
|
*extrema[MaxDimension];
|
|
|
|
|
|
ssize_t
|
|
|
count,
|
|
|
*histogram[MaxDimension],
|
|
|
y;
|
|
|
|
|
|
/*
|
|
|
Allocate histogram and extrema.
|
|
|
*/
|
|
|
assert(image != (Image *) NULL);
|
|
|
assert(image->signature == MagickCoreSignature);
|
|
|
if (image->debug != MagickFalse)
|
|
|
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
|
|
|
GetPixelInfo(image,pixel);
|
|
|
for (i=0; i < MaxDimension; i++)
|
|
|
{
|
|
|
histogram[i]=(ssize_t *) AcquireQuantumMemory(256UL,sizeof(**histogram));
|
|
|
extrema[i]=(short *) AcquireQuantumMemory(256UL,sizeof(**histogram));
|
|
|
if ((histogram[i] == (ssize_t *) NULL) || (extrema[i] == (short *) NULL))
|
|
|
{
|
|
|
for (i-- ; i >= 0; i--)
|
|
|
{
|
|
|
extrema[i]=(short *) RelinquishMagickMemory(extrema[i]);
|
|
|
histogram[i]=(ssize_t *) RelinquishMagickMemory(histogram[i]);
|
|
|
}
|
|
|
(void) ThrowMagickException(exception,GetMagickModule(),
|
|
|
ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
|
|
|
return(MagickFalse);
|
|
|
}
|
|
|
}
|
|
|
/*
|
|
|
Initialize histogram.
|
|
|
*/
|
|
|
InitializeHistogram(image,histogram,exception);
|
|
|
(void) OptimalTau(histogram[Red],Tau,0.2f,DeltaTau,
|
|
|
(smooth_threshold == 0.0f ? 1.0f : smooth_threshold),extrema[Red]);
|
|
|
(void) OptimalTau(histogram[Green],Tau,0.2f,DeltaTau,
|
|
|
(smooth_threshold == 0.0f ? 1.0f : smooth_threshold),extrema[Green]);
|
|
|
(void) OptimalTau(histogram[Blue],Tau,0.2f,DeltaTau,
|
|
|
(smooth_threshold == 0.0f ? 1.0f : smooth_threshold),extrema[Blue]);
|
|
|
/*
|
|
|
Form clusters.
|
|
|
*/
|
|
|
cluster=(Cluster *) NULL;
|
|
|
head=(Cluster *) NULL;
|
|
|
(void) memset(&red,0,sizeof(red));
|
|
|
(void) memset(&green,0,sizeof(green));
|
|
|
(void) memset(&blue,0,sizeof(blue));
|
|
|
while (DefineRegion(extrema[Red],&red) != 0)
|
|
|
{
|
|
|
green.index=0;
|
|
|
while (DefineRegion(extrema[Green],&green) != 0)
|
|
|
{
|
|
|
blue.index=0;
|
|
|
while (DefineRegion(extrema[Blue],&blue) != 0)
|
|
|
{
|
|
|
/*
|
|
|
Allocate a new class.
|
|
|
*/
|
|
|
if (head != (Cluster *) NULL)
|
|
|
{
|
|
|
cluster->next=(Cluster *) AcquireQuantumMemory(1,
|
|
|
sizeof(*cluster->next));
|
|
|
cluster=cluster->next;
|
|
|
}
|
|
|
else
|
|
|
{
|
|
|
cluster=(Cluster *) AcquireQuantumMemory(1,sizeof(*cluster));
|
|
|
head=cluster;
|
|
|
}
|
|
|
if (cluster == (Cluster *) NULL)
|
|
|
{
|
|
|
(void) ThrowMagickException(exception,GetMagickModule(),
|
|
|
ResourceLimitError,"MemoryAllocationFailed","`%s'",
|
|
|
image->filename);
|
|
|
return(MagickFalse);
|
|
|
}
|
|
|
/*
|
|
|
Initialize a new class.
|
|
|
*/
|
|
|
cluster->count=0;
|
|
|
cluster->red=red;
|
|
|
cluster->green=green;
|
|
|
cluster->blue=blue;
|
|
|
cluster->next=(Cluster *) NULL;
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
if (head == (Cluster *) NULL)
|
|
|
{
|
|
|
/*
|
|
|
No classes were identified-- create one.
|
|
|
*/
|
|
|
cluster=(Cluster *) AcquireQuantumMemory(1,sizeof(*cluster));
|
|
|
if (cluster == (Cluster *) NULL)
|
|
|
{
|
|
|
(void) ThrowMagickException(exception,GetMagickModule(),
|
|
|
ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
|
|
|
return(MagickFalse);
|
|
|
}
|
|
|
/*
|
|
|
Initialize a new class.
|
|
|
*/
|
|
|
cluster->count=0;
|
|
|
cluster->red=red;
|
|
|
cluster->green=green;
|
|
|
cluster->blue=blue;
|
|
|
cluster->next=(Cluster *) NULL;
|
|
|
head=cluster;
|
|
|
}
|
|
|
/*
|
|
|
Count the pixels for each cluster.
|
|
|
*/
|
|
|
count=0;
|
|
|
for (y=0; y < (ssize_t) image->rows; y++)
|
|
|
{
|
|
|
p=GetVirtualPixels(image,0,y,image->columns,1,exception);
|
|
|
if (p == (const Quantum *) NULL)
|
|
|
break;
|
|
|
for (x=0; x < (ssize_t) image->columns; x++)
|
|
|
{
|
|
|
PixelInfo
|
|
|
pixel;
|
|
|
|
|
|
pixel.red=(double) ScaleQuantumToChar(GetPixelRed(image,p));
|
|
|
pixel.green=(double) ScaleQuantumToChar(GetPixelGreen(image,p));
|
|
|
pixel.blue=(double) ScaleQuantumToChar(GetPixelBlue(image,p));
|
|
|
for (cluster=head; cluster != (Cluster *) NULL; cluster=cluster->next)
|
|
|
if ((pixel.red >= (double) (cluster->red.left-SafeMargin)) &&
|
|
|
(pixel.red <= (double) (cluster->red.right+SafeMargin)) &&
|
|
|
(pixel.green >= (double) (cluster->green.left-SafeMargin)) &&
|
|
|
(pixel.green <= (double) (cluster->green.right+SafeMargin)) &&
|
|
|
(pixel.blue >= (double) (cluster->blue.left-SafeMargin)) &&
|
|
|
(pixel.blue <= (double) (cluster->blue.right+SafeMargin)))
|
|
|
{
|
|
|
/*
|
|
|
Count this pixel.
|
|
|
*/
|
|
|
count++;
|
|
|
cluster->red.center+=pixel.red;
|
|
|
cluster->green.center+=pixel.green;
|
|
|
cluster->blue.center+=pixel.blue;
|
|
|
cluster->count++;
|
|
|
break;
|
|
|
}
|
|
|
p+=GetPixelChannels(image);
|
|
|
}
|
|
|
proceed=SetImageProgress(image,SegmentImageTag,(MagickOffsetType) y,
|
|
|
2*image->rows);
|
|
|
if (proceed == MagickFalse)
|
|
|
break;
|
|
|
}
|
|
|
/*
|
|
|
Remove clusters that do not meet minimum cluster threshold.
|
|
|
*/
|
|
|
count=0;
|
|
|
last_cluster=head;
|
|
|
next_cluster=head;
|
|
|
for (cluster=head; cluster != (Cluster *) NULL; cluster=next_cluster)
|
|
|
{
|
|
|
next_cluster=cluster->next;
|
|
|
if ((cluster->count > 0) &&
|
|
|
(cluster->count >= (count*cluster_threshold/100.0)))
|
|
|
{
|
|
|
/*
|
|
|
Initialize cluster.
|
|
|
*/
|
|
|
cluster->id=count;
|
|
|
cluster->red.center/=cluster->count;
|
|
|
cluster->green.center/=cluster->count;
|
|
|
cluster->blue.center/=cluster->count;
|
|
|
count++;
|
|
|
last_cluster=cluster;
|
|
|
continue;
|
|
|
}
|
|
|
/*
|
|
|
Delete cluster.
|
|
|
*/
|
|
|
if (cluster == head)
|
|
|
head=next_cluster;
|
|
|
else
|
|
|
last_cluster->next=next_cluster;
|
|
|
cluster=(Cluster *) RelinquishMagickMemory(cluster);
|
|
|
}
|
|
|
object=head;
|
|
|
background=head;
|
|
|
if (count > 1)
|
|
|
{
|
|
|
object=head->next;
|
|
|
for (cluster=object; cluster->next != (Cluster *) NULL; )
|
|
|
{
|
|
|
if (cluster->count < object->count)
|
|
|
object=cluster;
|
|
|
cluster=cluster->next;
|
|
|
}
|
|
|
background=head->next;
|
|
|
for (cluster=background; cluster->next != (Cluster *) NULL; )
|
|
|
{
|
|
|
if (cluster->count > background->count)
|
|
|
background=cluster;
|
|
|
cluster=cluster->next;
|
|
|
}
|
|
|
}
|
|
|
if (background != (Cluster *) NULL)
|
|
|
{
|
|
|
threshold=(background->red.center+object->red.center)/2.0;
|
|
|
pixel->red=(double) ScaleCharToQuantum((unsigned char)
|
|
|
(threshold+0.5));
|
|
|
threshold=(background->green.center+object->green.center)/2.0;
|
|
|
pixel->green=(double) ScaleCharToQuantum((unsigned char)
|
|
|
(threshold+0.5));
|
|
|
threshold=(background->blue.center+object->blue.center)/2.0;
|
|
|
pixel->blue=(double) ScaleCharToQuantum((unsigned char)
|
|
|
(threshold+0.5));
|
|
|
}
|
|
|
/*
|
|
|
Relinquish resources.
|
|
|
*/
|
|
|
for (cluster=head; cluster != (Cluster *) NULL; cluster=next_cluster)
|
|
|
{
|
|
|
next_cluster=cluster->next;
|
|
|
cluster=(Cluster *) RelinquishMagickMemory(cluster);
|
|
|
}
|
|
|
for (i=0; i < MaxDimension; i++)
|
|
|
{
|
|
|
extrema[i]=(short *) RelinquishMagickMemory(extrema[i]);
|
|
|
histogram[i]=(ssize_t *) RelinquishMagickMemory(histogram[i]);
|
|
|
}
|
|
|
return(MagickTrue);
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
% %
|
|
|
% %
|
|
|
% %
|
|
|
+ I n i t i a l i z e H i s t o g r a m %
|
|
|
% %
|
|
|
% %
|
|
|
% %
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
%
|
|
|
% InitializeHistogram() computes the histogram for an image.
|
|
|
%
|
|
|
% The format of the InitializeHistogram method is:
|
|
|
%
|
|
|
% InitializeHistogram(const Image *image,ssize_t **histogram)
|
|
|
%
|
|
|
% A description of each parameter follows.
|
|
|
%
|
|
|
% o image: Specifies a pointer to an Image structure; returned from
|
|
|
% ReadImage.
|
|
|
%
|
|
|
% o histogram: Specifies an array of integers representing the number
|
|
|
% of pixels for each intensity of a particular color component.
|
|
|
%
|
|
|
*/
|
|
|
static void InitializeHistogram(const Image *image,ssize_t **histogram,
|
|
|
ExceptionInfo *exception)
|
|
|
{
|
|
|
const Quantum
|
|
|
*p;
|
|
|
|
|
|
ssize_t
|
|
|
i,
|
|
|
x;
|
|
|
|
|
|
ssize_t
|
|
|
y;
|
|
|
|
|
|
/*
|
|
|
Initialize histogram.
|
|
|
*/
|
|
|
for (i=0; i <= 255; i++)
|
|
|
{
|
|
|
histogram[Red][i]=0;
|
|
|
histogram[Green][i]=0;
|
|
|
histogram[Blue][i]=0;
|
|
|
}
|
|
|
for (y=0; y < (ssize_t) image->rows; y++)
|
|
|
{
|
|
|
p=GetVirtualPixels(image,0,y,image->columns,1,exception);
|
|
|
if (p == (const Quantum *) NULL)
|
|
|
break;
|
|
|
for (x=0; x < (ssize_t) image->columns; x++)
|
|
|
{
|
|
|
histogram[Red][(ssize_t) ScaleQuantumToChar(GetPixelRed(image,p))]++;
|
|
|
histogram[Green][(ssize_t) ScaleQuantumToChar(GetPixelGreen(image,p))]++;
|
|
|
histogram[Blue][(ssize_t) ScaleQuantumToChar(GetPixelBlue(image,p))]++;
|
|
|
p+=GetPixelChannels(image);
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
% %
|
|
|
% %
|
|
|
% %
|
|
|
+ I n i t i a l i z e I n t e r v a l T r e e %
|
|
|
% %
|
|
|
% %
|
|
|
% %
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
%
|
|
|
% InitializeIntervalTree() initializes an interval tree from the lists of
|
|
|
% zero crossings.
|
|
|
%
|
|
|
% The format of the InitializeIntervalTree method is:
|
|
|
%
|
|
|
% InitializeIntervalTree(IntervalTree **list,ssize_t *number_nodes,
|
|
|
% IntervalTree *node)
|
|
|
%
|
|
|
% A description of each parameter follows.
|
|
|
%
|
|
|
% o zero_crossing: Specifies an array of structures of type ZeroCrossing.
|
|
|
%
|
|
|
% o number_crossings: This size_t specifies the number of elements
|
|
|
% in the zero_crossing array.
|
|
|
%
|
|
|
*/
|
|
|
|
|
|
static void InitializeList(IntervalTree **list,ssize_t *number_nodes,
|
|
|
IntervalTree *node)
|
|
|
{
|
|
|
if (node == (IntervalTree *) NULL)
|
|
|
return;
|
|
|
if (node->child == (IntervalTree *) NULL)
|
|
|
list[(*number_nodes)++]=node;
|
|
|
InitializeList(list,number_nodes,node->sibling);
|
|
|
InitializeList(list,number_nodes,node->child);
|
|
|
}
|
|
|
|
|
|
static void MeanStability(IntervalTree *node)
|
|
|
{
|
|
|
IntervalTree
|
|
|
*child;
|
|
|
|
|
|
if (node == (IntervalTree *) NULL)
|
|
|
return;
|
|
|
node->mean_stability=0.0;
|
|
|
child=node->child;
|
|
|
if (child != (IntervalTree *) NULL)
|
|
|
{
|
|
|
ssize_t
|
|
|
count;
|
|
|
|
|
|
double
|
|
|
sum;
|
|
|
|
|
|
sum=0.0;
|
|
|
count=0;
|
|
|
for ( ; child != (IntervalTree *) NULL; child=child->sibling)
|
|
|
{
|
|
|
sum+=child->stability;
|
|
|
count++;
|
|
|
}
|
|
|
node->mean_stability=sum/(double) count;
|
|
|
}
|
|
|
MeanStability(node->sibling);
|
|
|
MeanStability(node->child);
|
|
|
}
|
|
|
|
|
|
static void Stability(IntervalTree *node)
|
|
|
{
|
|
|
if (node == (IntervalTree *) NULL)
|
|
|
return;
|
|
|
if (node->child == (IntervalTree *) NULL)
|
|
|
node->stability=0.0;
|
|
|
else
|
|
|
node->stability=node->tau-(node->child)->tau;
|
|
|
Stability(node->sibling);
|
|
|
Stability(node->child);
|
|
|
}
|
|
|
|
|
|
static IntervalTree *InitializeIntervalTree(const ZeroCrossing *zero_crossing,
|
|
|
const size_t number_crossings)
|
|
|
{
|
|
|
IntervalTree
|
|
|
*head,
|
|
|
**list,
|
|
|
*node,
|
|
|
*root;
|
|
|
|
|
|
ssize_t
|
|
|
i;
|
|
|
|
|
|
ssize_t
|
|
|
j,
|
|
|
k,
|
|
|
left,
|
|
|
number_nodes;
|
|
|
|
|
|
/*
|
|
|
Allocate interval tree.
|
|
|
*/
|
|
|
list=(IntervalTree **) AcquireQuantumMemory((size_t) TreeLength,
|
|
|
sizeof(*list));
|
|
|
if (list == (IntervalTree **) NULL)
|
|
|
return((IntervalTree *) NULL);
|
|
|
/*
|
|
|
The root is the entire histogram.
|
|
|
*/
|
|
|
root=(IntervalTree *) AcquireCriticalMemory(sizeof(*root));
|
|
|
root->child=(IntervalTree *) NULL;
|
|
|
root->sibling=(IntervalTree *) NULL;
|
|
|
root->tau=0.0;
|
|
|
root->left=0;
|
|
|
root->right=255;
|
|
|
root->mean_stability=0.0;
|
|
|
root->stability=0.0;
|
|
|
(void) memset(list,0,TreeLength*sizeof(*list));
|
|
|
for (i=(-1); i < (ssize_t) number_crossings; i++)
|
|
|
{
|
|
|
/*
|
|
|
Initialize list with all nodes with no children.
|
|
|
*/
|
|
|
number_nodes=0;
|
|
|
InitializeList(list,&number_nodes,root);
|
|
|
/*
|
|
|
Split list.
|
|
|
*/
|
|
|
for (j=0; j < number_nodes; j++)
|
|
|
{
|
|
|
head=list[j];
|
|
|
left=head->left;
|
|
|
node=head;
|
|
|
for (k=head->left+1; k < head->right; k++)
|
|
|
{
|
|
|
if (zero_crossing[i+1].crossings[k] != 0)
|
|
|
{
|
|
|
if (node == head)
|
|
|
{
|
|
|
node->child=(IntervalTree *) AcquireQuantumMemory(1,
|
|
|
sizeof(*node->child));
|
|
|
node=node->child;
|
|
|
}
|
|
|
else
|
|
|
{
|
|
|
node->sibling=(IntervalTree *) AcquireQuantumMemory(1,
|
|
|
sizeof(*node->sibling));
|
|
|
node=node->sibling;
|
|
|
}
|
|
|
if (node == (IntervalTree *) NULL)
|
|
|
{
|
|
|
list=(IntervalTree **) RelinquishMagickMemory(list);
|
|
|
FreeNodes(root);
|
|
|
return((IntervalTree *) NULL);
|
|
|
}
|
|
|
node->tau=zero_crossing[i+1].tau;
|
|
|
node->child=(IntervalTree *) NULL;
|
|
|
node->sibling=(IntervalTree *) NULL;
|
|
|
node->left=left;
|
|
|
node->right=k;
|
|
|
left=k;
|
|
|
}
|
|
|
}
|
|
|
if (left != head->left)
|
|
|
{
|
|
|
node->sibling=(IntervalTree *) AcquireQuantumMemory(1,
|
|
|
sizeof(*node->sibling));
|
|
|
node=node->sibling;
|
|
|
if (node == (IntervalTree *) NULL)
|
|
|
{
|
|
|
list=(IntervalTree **) RelinquishMagickMemory(list);
|
|
|
FreeNodes(root);
|
|
|
return((IntervalTree *) NULL);
|
|
|
}
|
|
|
node->tau=zero_crossing[i+1].tau;
|
|
|
node->child=(IntervalTree *) NULL;
|
|
|
node->sibling=(IntervalTree *) NULL;
|
|
|
node->left=left;
|
|
|
node->right=head->right;
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
/*
|
|
|
Determine the stability: difference between a nodes tau and its child.
|
|
|
*/
|
|
|
Stability(root->child);
|
|
|
MeanStability(root->child);
|
|
|
list=(IntervalTree **) RelinquishMagickMemory(list);
|
|
|
return(root);
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
% %
|
|
|
% %
|
|
|
% %
|
|
|
+ O p t i m a l T a u %
|
|
|
% %
|
|
|
% %
|
|
|
% %
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
%
|
|
|
% OptimalTau() finds the optimal tau for each band of the histogram.
|
|
|
%
|
|
|
% The format of the OptimalTau method is:
|
|
|
%
|
|
|
% double OptimalTau(const ssize_t *histogram,const double max_tau,
|
|
|
% const double min_tau,const double delta_tau,
|
|
|
% const double smooth_threshold,short *extrema)
|
|
|
%
|
|
|
% A description of each parameter follows.
|
|
|
%
|
|
|
% o histogram: Specifies an array of integers representing the number
|
|
|
% of pixels for each intensity of a particular color component.
|
|
|
%
|
|
|
% o extrema: Specifies a pointer to an array of integers. They
|
|
|
% represent the peaks and valleys of the histogram for each color
|
|
|
% component.
|
|
|
%
|
|
|
*/
|
|
|
|
|
|
static void ActiveNodes(IntervalTree **list,ssize_t *number_nodes,
|
|
|
IntervalTree *node)
|
|
|
{
|
|
|
if (node == (IntervalTree *) NULL)
|
|
|
return;
|
|
|
if (node->stability >= node->mean_stability)
|
|
|
{
|
|
|
list[(*number_nodes)++]=node;
|
|
|
ActiveNodes(list,number_nodes,node->sibling);
|
|
|
}
|
|
|
else
|
|
|
{
|
|
|
ActiveNodes(list,number_nodes,node->sibling);
|
|
|
ActiveNodes(list,number_nodes,node->child);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
static void FreeNodes(IntervalTree *node)
|
|
|
{
|
|
|
if (node == (IntervalTree *) NULL)
|
|
|
return;
|
|
|
FreeNodes(node->sibling);
|
|
|
FreeNodes(node->child);
|
|
|
node=(IntervalTree *) RelinquishMagickMemory(node);
|
|
|
}
|
|
|
|
|
|
static double OptimalTau(const ssize_t *histogram,const double max_tau,
|
|
|
const double min_tau,const double delta_tau,const double smooth_threshold,
|
|
|
short *extrema)
|
|
|
{
|
|
|
double
|
|
|
average_tau,
|
|
|
*derivative,
|
|
|
*second_derivative,
|
|
|
tau,
|
|
|
value;
|
|
|
|
|
|
IntervalTree
|
|
|
**list,
|
|
|
*node,
|
|
|
*root;
|
|
|
|
|
|
MagickBooleanType
|
|
|
peak;
|
|
|
|
|
|
ssize_t
|
|
|
i,
|
|
|
x;
|
|
|
|
|
|
size_t
|
|
|
count,
|
|
|
number_crossings;
|
|
|
|
|
|
ssize_t
|
|
|
index,
|
|
|
j,
|
|
|
k,
|
|
|
number_nodes;
|
|
|
|
|
|
ZeroCrossing
|
|
|
*zero_crossing;
|
|
|
|
|
|
/*
|
|
|
Allocate interval tree.
|
|
|
*/
|
|
|
list=(IntervalTree **) AcquireQuantumMemory((size_t) TreeLength,
|
|
|
sizeof(*list));
|
|
|
if (list == (IntervalTree **) NULL)
|
|
|
return(0.0);
|
|
|
/*
|
|
|
Allocate zero crossing list.
|
|
|
*/
|
|
|
count=(size_t) ((max_tau-min_tau)/delta_tau)+2;
|
|
|
zero_crossing=(ZeroCrossing *) AcquireQuantumMemory((size_t) count,
|
|
|
sizeof(*zero_crossing));
|
|
|
if (zero_crossing == (ZeroCrossing *) NULL)
|
|
|
{
|
|
|
list=(IntervalTree **) RelinquishMagickMemory(list);
|
|
|
return(0.0);
|
|
|
}
|
|
|
for (i=0; i < (ssize_t) count; i++)
|
|
|
zero_crossing[i].tau=(-1.0);
|
|
|
/*
|
|
|
Initialize zero crossing list.
|
|
|
*/
|
|
|
derivative=(double *) AcquireCriticalMemory(256*sizeof(*derivative));
|
|
|
second_derivative=(double *) AcquireCriticalMemory(256*
|
|
|
sizeof(*second_derivative));
|
|
|
i=0;
|
|
|
for (tau=max_tau; tau >= min_tau; tau-=delta_tau)
|
|
|
{
|
|
|
zero_crossing[i].tau=tau;
|
|
|
ScaleSpace(histogram,tau,zero_crossing[i].histogram);
|
|
|
DerivativeHistogram(zero_crossing[i].histogram,derivative);
|
|
|
DerivativeHistogram(derivative,second_derivative);
|
|
|
ZeroCrossHistogram(second_derivative,smooth_threshold,
|
|
|
zero_crossing[i].crossings);
|
|
|
i++;
|
|
|
}
|
|
|
/*
|
|
|
Add an entry for the original histogram.
|
|
|
*/
|
|
|
zero_crossing[i].tau=0.0;
|
|
|
for (j=0; j <= 255; j++)
|
|
|
zero_crossing[i].histogram[j]=(double) histogram[j];
|
|
|
DerivativeHistogram(zero_crossing[i].histogram,derivative);
|
|
|
DerivativeHistogram(derivative,second_derivative);
|
|
|
ZeroCrossHistogram(second_derivative,smooth_threshold,
|
|
|
zero_crossing[i].crossings);
|
|
|
number_crossings=(size_t) i;
|
|
|
derivative=(double *) RelinquishMagickMemory(derivative);
|
|
|
second_derivative=(double *) RelinquishMagickMemory(second_derivative);
|
|
|
/*
|
|
|
Ensure the scale-space fingerprints form lines in scale-space, not loops.
|
|
|
*/
|
|
|
ConsolidateCrossings(zero_crossing,number_crossings);
|
|
|
/*
|
|
|
Force endpoints to be included in the interval.
|
|
|
*/
|
|
|
for (i=0; i <= (ssize_t) number_crossings; i++)
|
|
|
{
|
|
|
for (j=0; j < 255; j++)
|
|
|
if (zero_crossing[i].crossings[j] != 0)
|
|
|
break;
|
|
|
zero_crossing[i].crossings[0]=(-zero_crossing[i].crossings[j]);
|
|
|
for (j=255; j > 0; j--)
|
|
|
if (zero_crossing[i].crossings[j] != 0)
|
|
|
break;
|
|
|
zero_crossing[i].crossings[255]=(-zero_crossing[i].crossings[j]);
|
|
|
}
|
|
|
/*
|
|
|
Initialize interval tree.
|
|
|
*/
|
|
|
root=InitializeIntervalTree(zero_crossing,number_crossings);
|
|
|
if (root == (IntervalTree *) NULL)
|
|
|
{
|
|
|
zero_crossing=(ZeroCrossing *) RelinquishMagickMemory(zero_crossing);
|
|
|
list=(IntervalTree **) RelinquishMagickMemory(list);
|
|
|
return(0.0);
|
|
|
}
|
|
|
/*
|
|
|
Find active nodes: Stability is greater (or equal) to the mean stability of
|
|
|
its children.
|
|
|
*/
|
|
|
number_nodes=0;
|
|
|
ActiveNodes(list,&number_nodes,root->child);
|
|
|
/*
|
|
|
Initialize extrema.
|
|
|
*/
|
|
|
for (i=0; i <= 255; i++)
|
|
|
extrema[i]=0;
|
|
|
for (i=0; i < number_nodes; i++)
|
|
|
{
|
|
|
/*
|
|
|
Find this tau in zero crossings list.
|
|
|
*/
|
|
|
k=0;
|
|
|
node=list[i];
|
|
|
for (j=0; j <= (ssize_t) number_crossings; j++)
|
|
|
if (zero_crossing[j].tau == node->tau)
|
|
|
k=j;
|
|
|
/*
|
|
|
Find the value of the peak.
|
|
|
*/
|
|
|
peak=zero_crossing[k].crossings[node->right] == -1 ? MagickTrue :
|
|
|
MagickFalse;
|
|
|
index=node->left;
|
|
|
value=zero_crossing[k].histogram[index];
|
|
|
for (x=node->left; x <= node->right; x++)
|
|
|
{
|
|
|
if (peak != MagickFalse)
|
|
|
{
|
|
|
if (zero_crossing[k].histogram[x] > value)
|
|
|
{
|
|
|
value=zero_crossing[k].histogram[x];
|
|
|
index=x;
|
|
|
}
|
|
|
}
|
|
|
else
|
|
|
if (zero_crossing[k].histogram[x] < value)
|
|
|
{
|
|
|
value=zero_crossing[k].histogram[x];
|
|
|
index=x;
|
|
|
}
|
|
|
}
|
|
|
for (x=node->left; x <= node->right; x++)
|
|
|
{
|
|
|
if (index == 0)
|
|
|
index=256;
|
|
|
if (peak != MagickFalse)
|
|
|
extrema[x]=(short) index;
|
|
|
else
|
|
|
extrema[x]=(short) (-index);
|
|
|
}
|
|
|
}
|
|
|
/*
|
|
|
Determine the average tau.
|
|
|
*/
|
|
|
average_tau=0.0;
|
|
|
for (i=0; i < number_nodes; i++)
|
|
|
average_tau+=list[i]->tau;
|
|
|
average_tau*=PerceptibleReciprocal((double) number_nodes);
|
|
|
/*
|
|
|
Relinquish resources.
|
|
|
*/
|
|
|
FreeNodes(root);
|
|
|
zero_crossing=(ZeroCrossing *) RelinquishMagickMemory(zero_crossing);
|
|
|
list=(IntervalTree **) RelinquishMagickMemory(list);
|
|
|
return(average_tau);
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
% %
|
|
|
% %
|
|
|
% %
|
|
|
+ S c a l e S p a c e %
|
|
|
% %
|
|
|
% %
|
|
|
% %
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
%
|
|
|
% ScaleSpace() performs a scale-space filter on the 1D histogram.
|
|
|
%
|
|
|
% The format of the ScaleSpace method is:
|
|
|
%
|
|
|
% ScaleSpace(const ssize_t *histogram,const double tau,
|
|
|
% double *scale_histogram)
|
|
|
%
|
|
|
% A description of each parameter follows.
|
|
|
%
|
|
|
% o histogram: Specifies an array of doubles representing the number
|
|
|
% of pixels for each intensity of a particular color component.
|
|
|
%
|
|
|
*/
|
|
|
static void ScaleSpace(const ssize_t *histogram,const double tau,
|
|
|
double *scale_histogram)
|
|
|
{
|
|
|
double
|
|
|
alpha,
|
|
|
beta,
|
|
|
*gamma,
|
|
|
sum;
|
|
|
|
|
|
ssize_t
|
|
|
u,
|
|
|
x;
|
|
|
|
|
|
gamma=(double *) AcquireQuantumMemory(256,sizeof(*gamma));
|
|
|
if (gamma == (double *) NULL)
|
|
|
ThrowFatalException(ResourceLimitFatalError,"UnableToAllocateGammaMap");
|
|
|
alpha=PerceptibleReciprocal(tau*sqrt(2.0*MagickPI));
|
|
|
beta=(-1.0*PerceptibleReciprocal(2.0*tau*tau));
|
|
|
for (x=0; x <= 255; x++)
|
|
|
gamma[x]=0.0;
|
|
|
for (x=0; x <= 255; x++)
|
|
|
{
|
|
|
gamma[x]=exp((double) beta*x*x);
|
|
|
if (gamma[x] < MagickEpsilon)
|
|
|
break;
|
|
|
}
|
|
|
for (x=0; x <= 255; x++)
|
|
|
{
|
|
|
sum=0.0;
|
|
|
for (u=0; u <= 255; u++)
|
|
|
sum+=(double) histogram[u]*gamma[MagickAbsoluteValue(x-u)];
|
|
|
scale_histogram[x]=alpha*sum;
|
|
|
}
|
|
|
gamma=(double *) RelinquishMagickMemory(gamma);
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
% %
|
|
|
% %
|
|
|
% %
|
|
|
% S e g m e n t I m a g e %
|
|
|
% %
|
|
|
% %
|
|
|
% %
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
%
|
|
|
% SegmentImage() segment an image by analyzing the histograms of the color
|
|
|
% components and identifying units that are homogeneous with the fuzzy
|
|
|
% C-means technique.
|
|
|
%
|
|
|
% The format of the SegmentImage method is:
|
|
|
%
|
|
|
% MagickBooleanType SegmentImage(Image *image,
|
|
|
% const ColorspaceType colorspace,const MagickBooleanType verbose,
|
|
|
% const double cluster_threshold,const double smooth_threshold,
|
|
|
% ExceptionInfo *exception)
|
|
|
%
|
|
|
% A description of each parameter follows.
|
|
|
%
|
|
|
% o image: the image.
|
|
|
%
|
|
|
% o colorspace: Indicate the colorspace.
|
|
|
%
|
|
|
% o verbose: Set to MagickTrue to print detailed information about the
|
|
|
% identified classes.
|
|
|
%
|
|
|
% o cluster_threshold: This represents the minimum number of pixels
|
|
|
% contained in a hexahedra before it can be considered valid (expressed
|
|
|
% as a percentage).
|
|
|
%
|
|
|
% o smooth_threshold: the smoothing threshold eliminates noise in the second
|
|
|
% derivative of the histogram. As the value is increased, you can expect a
|
|
|
% smoother second derivative.
|
|
|
%
|
|
|
% o exception: return any errors or warnings in this structure.
|
|
|
%
|
|
|
*/
|
|
|
MagickExport MagickBooleanType SegmentImage(Image *image,
|
|
|
const ColorspaceType colorspace,const MagickBooleanType verbose,
|
|
|
const double cluster_threshold,const double smooth_threshold,
|
|
|
ExceptionInfo *exception)
|
|
|
{
|
|
|
ColorspaceType
|
|
|
previous_colorspace;
|
|
|
|
|
|
MagickBooleanType
|
|
|
status;
|
|
|
|
|
|
ssize_t
|
|
|
i;
|
|
|
|
|
|
short
|
|
|
*extrema[MaxDimension];
|
|
|
|
|
|
ssize_t
|
|
|
*histogram[MaxDimension];
|
|
|
|
|
|
/*
|
|
|
Allocate histogram and extrema.
|
|
|
*/
|
|
|
assert(image != (Image *) NULL);
|
|
|
assert(image->signature == MagickCoreSignature);
|
|
|
if (image->debug != MagickFalse)
|
|
|
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
|
|
|
for (i=0; i < MaxDimension; i++)
|
|
|
{
|
|
|
histogram[i]=(ssize_t *) AcquireQuantumMemory(256,sizeof(**histogram));
|
|
|
extrema[i]=(short *) AcquireQuantumMemory(256,sizeof(**extrema));
|
|
|
if ((histogram[i] == (ssize_t *) NULL) || (extrema[i] == (short *) NULL))
|
|
|
{
|
|
|
for (i-- ; i >= 0; i--)
|
|
|
{
|
|
|
extrema[i]=(short *) RelinquishMagickMemory(extrema[i]);
|
|
|
histogram[i]=(ssize_t *) RelinquishMagickMemory(histogram[i]);
|
|
|
}
|
|
|
ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
|
|
|
image->filename)
|
|
|
}
|
|
|
}
|
|
|
/*
|
|
|
Initialize histogram.
|
|
|
*/
|
|
|
previous_colorspace=image->colorspace;
|
|
|
(void) TransformImageColorspace(image,colorspace,exception);
|
|
|
InitializeHistogram(image,histogram,exception);
|
|
|
(void) OptimalTau(histogram[Red],Tau,0.2,DeltaTau,smooth_threshold == 0.0 ?
|
|
|
1.0 : smooth_threshold,extrema[Red]);
|
|
|
(void) OptimalTau(histogram[Green],Tau,0.2,DeltaTau,smooth_threshold == 0.0 ?
|
|
|
1.0 : smooth_threshold,extrema[Green]);
|
|
|
(void) OptimalTau(histogram[Blue],Tau,0.2,DeltaTau,smooth_threshold == 0.0 ?
|
|
|
1.0 : smooth_threshold,extrema[Blue]);
|
|
|
/*
|
|
|
Classify using the fuzzy c-Means technique.
|
|
|
*/
|
|
|
status=Classify(image,extrema,cluster_threshold,WeightingExponent,verbose,
|
|
|
exception);
|
|
|
(void) TransformImageColorspace(image,previous_colorspace,exception);
|
|
|
/*
|
|
|
Relinquish resources.
|
|
|
*/
|
|
|
for (i=0; i < MaxDimension; i++)
|
|
|
{
|
|
|
extrema[i]=(short *) RelinquishMagickMemory(extrema[i]);
|
|
|
histogram[i]=(ssize_t *) RelinquishMagickMemory(histogram[i]);
|
|
|
}
|
|
|
return(status);
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
% %
|
|
|
% %
|
|
|
% %
|
|
|
+ Z e r o C r o s s H i s t o g r a m %
|
|
|
% %
|
|
|
% %
|
|
|
% %
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
%
|
|
|
% ZeroCrossHistogram() find the zero crossings in a histogram and marks
|
|
|
% directions as: 1 is negative to positive; 0 is zero crossing; and -1
|
|
|
% is positive to negative.
|
|
|
%
|
|
|
% The format of the ZeroCrossHistogram method is:
|
|
|
%
|
|
|
% ZeroCrossHistogram(double *second_derivative,
|
|
|
% const double smooth_threshold,short *crossings)
|
|
|
%
|
|
|
% A description of each parameter follows.
|
|
|
%
|
|
|
% o second_derivative: Specifies an array of doubles representing the
|
|
|
% second derivative of the histogram of a particular color component.
|
|
|
%
|
|
|
% o crossings: This array of integers is initialized with
|
|
|
% -1, 0, or 1 representing the slope of the first derivative of the
|
|
|
% of a particular color component.
|
|
|
%
|
|
|
*/
|
|
|
static void ZeroCrossHistogram(double *second_derivative,
|
|
|
const double smooth_threshold,short *crossings)
|
|
|
{
|
|
|
ssize_t
|
|
|
i;
|
|
|
|
|
|
ssize_t
|
|
|
parity;
|
|
|
|
|
|
/*
|
|
|
Merge low numbers to zero to help prevent noise.
|
|
|
*/
|
|
|
for (i=0; i <= 255; i++)
|
|
|
if ((second_derivative[i] < smooth_threshold) &&
|
|
|
(second_derivative[i] >= -smooth_threshold))
|
|
|
second_derivative[i]=0.0;
|
|
|
/*
|
|
|
Mark zero crossings.
|
|
|
*/
|
|
|
parity=0;
|
|
|
for (i=0; i <= 255; i++)
|
|
|
{
|
|
|
crossings[i]=0;
|
|
|
if (second_derivative[i] < 0.0)
|
|
|
{
|
|
|
if (parity > 0)
|
|
|
crossings[i]=(-1);
|
|
|
parity=1;
|
|
|
}
|
|
|
else
|
|
|
if (second_derivative[i] > 0.0)
|
|
|
{
|
|
|
if (parity < 0)
|
|
|
crossings[i]=1;
|
|
|
parity=(-1);
|
|
|
}
|
|
|
}
|
|
|
}
|