You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
227 lines
7.7 KiB
227 lines
7.7 KiB
// Copyright 2020 Google LLC
|
|
//
|
|
// This source code is licensed under the BSD-style license found in the
|
|
// LICENSE file in the root directory of this source tree.
|
|
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <cmath>
|
|
#include <functional>
|
|
#include <limits>
|
|
#include <random>
|
|
#include <vector>
|
|
|
|
#include <xnnpack.h>
|
|
|
|
#include <benchmark/benchmark.h>
|
|
#include "bench/utils.h"
|
|
#ifdef BENCHMARK_TENSORFLOW_LITE
|
|
#include "flatbuffers/include/flatbuffers/flatbuffers.h"
|
|
#include "tensorflow/lite/interpreter.h"
|
|
#include "tensorflow/lite/kernels/register.h"
|
|
#include "tensorflow/lite/model.h"
|
|
#include "tensorflow/lite/schema/schema_generated.h"
|
|
#include "tensorflow/lite/version.h"
|
|
#endif // BENCHMARK_TENSORFLOW_LITE
|
|
|
|
|
|
static void xnnpack_bankers_rounding_f32(benchmark::State& state) {
|
|
const size_t batch_size = state.range(0);
|
|
const size_t channels = state.range(1);
|
|
|
|
std::random_device random_device;
|
|
auto rng = std::mt19937(random_device());
|
|
auto f32rng = std::bind(std::uniform_real_distribution<float>(-10.0f, 10.0f), std::ref(rng));
|
|
|
|
std::vector<float> input(batch_size * channels);
|
|
std::vector<float> output(batch_size * channels);
|
|
std::generate(input.begin(), input.end(), std::ref(f32rng));
|
|
std::fill(output.begin(), output.end(), std::nanf(""));
|
|
|
|
xnn_status status = xnn_initialize(nullptr /* allocator */);
|
|
if (status != xnn_status_success) {
|
|
state.SkipWithError("failed to initialize XNNPACK");
|
|
return;
|
|
}
|
|
|
|
xnn_operator_t bankers_rounding_op = nullptr;
|
|
status = xnn_create_bankers_rounding_nc_f32(
|
|
channels, channels /* input stride */, channels /* output stride */,
|
|
0 /* flags */, &bankers_rounding_op);
|
|
if (status != xnn_status_success || bankers_rounding_op == nullptr) {
|
|
state.SkipWithError("failed to create Bankers' Rounding operator");
|
|
return;
|
|
}
|
|
|
|
status = xnn_setup_bankers_rounding_nc_f32(
|
|
bankers_rounding_op,
|
|
batch_size,
|
|
input.data(), output.data(),
|
|
nullptr /* thread pool */);
|
|
if (status != xnn_status_success) {
|
|
state.SkipWithError("failed to setup Bankers' Rounding operator");
|
|
return;
|
|
}
|
|
|
|
for (auto _ : state) {
|
|
status = xnn_run_operator(bankers_rounding_op, nullptr /* thread pool */);
|
|
if (status != xnn_status_success) {
|
|
state.SkipWithError("failed to run Bankers' Rounding operator");
|
|
return;
|
|
}
|
|
}
|
|
|
|
status = xnn_delete_operator(bankers_rounding_op);
|
|
if (status != xnn_status_success) {
|
|
state.SkipWithError("failed to delete Bankers' Rounding operator");
|
|
return;
|
|
}
|
|
|
|
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
|
|
if (cpu_frequency != 0) {
|
|
state.counters["cpufreq"] = cpu_frequency;
|
|
}
|
|
|
|
const size_t elements_per_iteration = batch_size * channels;
|
|
state.counters["elements"] =
|
|
benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate);
|
|
|
|
const size_t bytes_per_iteration = 2 * elements_per_iteration * sizeof(float);
|
|
state.counters["bytes"] =
|
|
benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate);
|
|
}
|
|
|
|
#ifdef BENCHMARK_TENSORFLOW_LITE
|
|
static void tflite_bankers_rounding_f32(benchmark::State& state) {
|
|
const size_t batch_size = state.range(0);
|
|
const size_t channels = state.range(1);
|
|
|
|
std::random_device random_device;
|
|
auto rng = std::mt19937(random_device());
|
|
auto f32rng = std::bind(std::uniform_real_distribution<float>(-10.0f, 10.0f), std::ref(rng));
|
|
|
|
flatbuffers::FlatBufferBuilder builder;
|
|
const flatbuffers::Offset<tflite::OperatorCode> operator_code =
|
|
CreateOperatorCode(builder, tflite::BuiltinOperator_ROUND);
|
|
|
|
const std::array<flatbuffers::Offset<tflite::Buffer>, 1> buffers{{
|
|
tflite::CreateBuffer(builder, builder.CreateVector({})),
|
|
}};
|
|
|
|
const std::array<int32_t, 4> input_shape{{
|
|
static_cast<int32_t>(batch_size),
|
|
static_cast<int32_t>(1 /* height */),
|
|
static_cast<int32_t>(1 /* width */),
|
|
static_cast<int32_t>(channels)
|
|
}};
|
|
const std::array<int32_t, 4> output_shape{{
|
|
static_cast<int32_t>(batch_size),
|
|
static_cast<int32_t>(1 /* height */),
|
|
static_cast<int32_t>(1 /* width */),
|
|
static_cast<int32_t>(channels)
|
|
}};
|
|
|
|
const std::array<flatbuffers::Offset<tflite::Tensor>, 2> tensors{{
|
|
tflite::CreateTensor(builder,
|
|
builder.CreateVector<int32_t>(input_shape.data(), input_shape.size()),
|
|
tflite::TensorType_FLOAT32),
|
|
tflite::CreateTensor(builder,
|
|
builder.CreateVector<int32_t>(output_shape.data(), output_shape.size()),
|
|
tflite::TensorType_FLOAT32),
|
|
}};
|
|
|
|
const std::array<int32_t, 1> op_inputs{{ 0 }};
|
|
const std::array<int32_t, 1> op_outputs{{ 1 }};
|
|
flatbuffers::Offset<tflite::Operator> op = tflite::CreateOperator(
|
|
builder,
|
|
0 /* opcode_index */,
|
|
builder.CreateVector<int32_t>(op_inputs.data(), op_inputs.size()),
|
|
builder.CreateVector<int32_t>(op_outputs.data(), op_outputs.size()));
|
|
|
|
const std::array<int32_t, 1> graph_inputs{{ 0 }};
|
|
const std::array<int32_t, 1> graph_outputs{{ 1 }};
|
|
const flatbuffers::Offset<tflite::SubGraph> subgraph = tflite::CreateSubGraph(
|
|
builder,
|
|
builder.CreateVector(tensors.data(), tensors.size()),
|
|
builder.CreateVector<int32_t>(graph_inputs.data(), graph_inputs.size()),
|
|
builder.CreateVector<int32_t>(graph_outputs.data(), graph_outputs.size()),
|
|
builder.CreateVector(&op, 1));
|
|
|
|
const flatbuffers::Offset<tflite::Model> model_buffer = tflite::CreateModel(builder,
|
|
TFLITE_SCHEMA_VERSION,
|
|
builder.CreateVector(&operator_code, 1),
|
|
builder.CreateVector(&subgraph, 1),
|
|
builder.CreateString("Round model"),
|
|
builder.CreateVector(buffers.data(), buffers.size()));
|
|
|
|
builder.Finish(model_buffer);
|
|
|
|
const tflite::Model* model = tflite::GetModel(builder.GetBufferPointer());
|
|
tflite::ops::builtin::BuiltinOpResolver resolver;
|
|
tflite::InterpreterBuilder interpreterBuilder(model, resolver);
|
|
std::unique_ptr<tflite::Interpreter> interpreter;
|
|
if (interpreterBuilder(&interpreter) != kTfLiteOk) {
|
|
state.SkipWithError("failed to create TFLite interpreter");
|
|
return;
|
|
}
|
|
if (interpreter == nullptr) {
|
|
state.SkipWithError("TFLite interpreter is null");
|
|
return;
|
|
}
|
|
interpreter->SetNumThreads(1);
|
|
|
|
if (interpreter->AllocateTensors() != kTfLiteOk) {
|
|
state.SkipWithError("failed to allocate tensors");
|
|
return;
|
|
}
|
|
|
|
std::generate(
|
|
interpreter->typed_tensor<float>(0),
|
|
interpreter->typed_tensor<float>(0) + batch_size * channels,
|
|
std::ref(f32rng));
|
|
|
|
for (auto _ : state) {
|
|
if (interpreter->Invoke() != kTfLiteOk) {
|
|
state.SkipWithError("failed to invoke TFLite interpreter");
|
|
return;
|
|
}
|
|
}
|
|
|
|
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
|
|
if (cpu_frequency != 0) {
|
|
state.counters["cpufreq"] = cpu_frequency;
|
|
}
|
|
|
|
const size_t elements_per_iteration = batch_size * channels;
|
|
state.counters["elements"] =
|
|
benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate);
|
|
|
|
const size_t bytes_per_iteration = 2 * elements_per_iteration * sizeof(float);
|
|
state.counters["bytes"] =
|
|
benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate);
|
|
|
|
interpreter.reset();
|
|
}
|
|
#endif // BENCHMARK_TENSORFLOW_LITE
|
|
|
|
static void CharacteristicArguments(benchmark::internal::Benchmark* b)
|
|
{
|
|
b->ArgNames({"N", "C"});
|
|
|
|
int32_t c = 16;
|
|
for (int32_t n = 224; n >= 7; n /= 2) {
|
|
b->Args({n * n, c});
|
|
c *= 2;
|
|
}
|
|
}
|
|
|
|
BENCHMARK(xnnpack_bankers_rounding_f32)->Apply(CharacteristicArguments)->UseRealTime();
|
|
|
|
#ifdef BENCHMARK_TENSORFLOW_LITE
|
|
BENCHMARK(tflite_bankers_rounding_f32)->Apply(CharacteristicArguments)->UseRealTime();
|
|
#endif // BENCHMARK_TENSORFLOW_LITE
|
|
|
|
#ifndef XNNPACK_BENCHMARK_NO_MAIN
|
|
BENCHMARK_MAIN();
|
|
#endif
|