You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
210 lines
7.8 KiB
210 lines
7.8 KiB
// Copyright 2019 Google LLC
|
|
//
|
|
// This source code is licensed under the BSD-style license found in the
|
|
// LICENSE file in the root directory of this source tree.
|
|
|
|
#include <algorithm>
|
|
#include <cfloat>
|
|
#include <cmath>
|
|
#include <functional>
|
|
#include <random>
|
|
#include <vector>
|
|
|
|
#include <cpuinfo.h>
|
|
|
|
#include <benchmark/benchmark.h>
|
|
#include <fp16/fp16.h>
|
|
#include "bench/spmm.h"
|
|
#include "bench/utils.h"
|
|
#include <xnnpack/AlignedAllocator.h>
|
|
#include <xnnpack/common.h>
|
|
#include <xnnpack/params-init.h>
|
|
#include <xnnpack/params.h>
|
|
#include <xnnpack/spmm.h>
|
|
|
|
|
|
static void SpMMBenchmark(benchmark::State& state,
|
|
xnn_f16_spmm_minmax_ukernel_function spmm, uint32_t mr, uint32_t nr, float sparsity)
|
|
{
|
|
if (!cpuinfo_initialize()) {
|
|
state.SkipWithError("cpuinfo initialization failed");
|
|
return;
|
|
}
|
|
if (!benchmark::utils::CheckNEONFP16ARITH(state)) {
|
|
return;
|
|
}
|
|
|
|
const size_t mc = state.range(0);
|
|
const size_t nc = state.range(1);
|
|
const size_t kc = state.range(2);
|
|
|
|
std::random_device random_device;
|
|
auto rng = std::mt19937(random_device());
|
|
auto f32rng = std::bind(std::uniform_real_distribution<float>(), std::ref(rng));
|
|
auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);
|
|
|
|
// if using blocks, generate the reduced matrix first and then extrude along
|
|
// the block dimension (n), to get the full matrix
|
|
size_t ncols = nc / nr + nc % nr;
|
|
std::vector<uint16_t> b(ncols * kc);
|
|
std::vector<uint16_t> bias(nc);
|
|
std::vector<uint16_t> w;
|
|
std::vector<uint32_t> nmap;
|
|
std::vector<int32_t> dmap;
|
|
const size_t sparse_end = std::min(size_t(float(b.size()) * sparsity), b.size());
|
|
const size_t num_nonzeroes = nr * (b.size() - sparse_end);
|
|
|
|
const size_t w_elements = num_nonzeroes + nc;
|
|
const size_t c_elements = mc * nc;
|
|
const size_t dmap_elements = num_nonzeroes / nr;
|
|
const size_t nmap_elements = nc;
|
|
const size_t num_buffers = 1 +
|
|
benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(),
|
|
sizeof(uint16_t) * (w_elements + c_elements) + sizeof(uint32_t) * (dmap_elements + nmap_elements));
|
|
|
|
// Micro-kernel can access one element beyond w and dmap for software pipelining.
|
|
w.reserve(num_buffers * w_elements + 1);
|
|
dmap.reserve(num_buffers * dmap_elements + 1);
|
|
nmap.resize(num_buffers * nmap_elements);
|
|
|
|
std::vector<size_t> a_offsets(num_buffers);
|
|
|
|
for (size_t buffer_index = 0; buffer_index < num_buffers; buffer_index++) {
|
|
// Re-generate weights. Note: each re-generation produces the number of non-zeroes.
|
|
std::fill(b.begin(), b.begin() + sparse_end, 0);
|
|
std::generate(b.begin() + sparse_end, b.end(), std::ref(f16rng));
|
|
std::shuffle(b.begin(), b.end(), rng);
|
|
std::generate(bias.begin(), bias.end(), std::ref(f16rng));
|
|
|
|
uint32_t first_j = 0, last_j = 0;
|
|
bool is_first_nonzero = true;
|
|
for (uint32_t i = 0; i < nc / nr; i++) {
|
|
for (uint32_t n = 0; n < nr; n++)
|
|
w.push_back(bias[nr * i + n]);
|
|
for (uint32_t j = 0; j < kc; j++) {
|
|
if ((b[i * kc + j] & 0x7FFF) != 0) {
|
|
for (size_t l = 0; l < nr; l++)
|
|
w.push_back(fp16_ieee_from_fp32_value(fp16_ieee_to_fp32_value(b[i * kc + j]) + static_cast<float>(i)));
|
|
if (is_first_nonzero) {
|
|
first_j = j;
|
|
} else {
|
|
const ptrdiff_t increment = int32_t(j - last_j) * int32_t(mc) * int32_t(sizeof(uint16_t));
|
|
dmap.push_back(increment);
|
|
}
|
|
last_j = j;
|
|
is_first_nonzero = false;
|
|
nmap[buffer_index * nmap_elements + i] += 1;
|
|
}
|
|
}
|
|
}
|
|
for (uint32_t i = nc / nr; i < ncols; i++) {
|
|
w.push_back(bias[i]);
|
|
for (uint32_t j = 0; j < kc; j++) {
|
|
if ((b[i * kc + j] & 0x7FFF) != 0) {
|
|
w.push_back(b[i * kc + j]);
|
|
if (is_first_nonzero) {
|
|
first_j = j;
|
|
} else {
|
|
const ptrdiff_t increment = int32_t(j - last_j) * int32_t(mc) * int32_t(sizeof(uint16_t));
|
|
dmap.push_back(increment);
|
|
}
|
|
last_j = j;
|
|
is_first_nonzero = false;
|
|
nmap[buffer_index * nmap_elements + i] += 1;
|
|
}
|
|
}
|
|
}
|
|
{
|
|
const ptrdiff_t increment = int32_t(first_j - last_j) * int32_t(mc) * int32_t(sizeof(uint16_t));
|
|
dmap.push_back(increment);
|
|
}
|
|
|
|
a_offsets[buffer_index] = first_j * mc;
|
|
}
|
|
|
|
// Micro-kernel can access one element beyond w and dmap for software pipelining.
|
|
w.resize(w.size() + 1);
|
|
dmap.resize(dmap.size() + 1);
|
|
|
|
std::vector<float, AlignedAllocator<float, 64>> a(kc * mc);
|
|
std::vector<float, AlignedAllocator<float, 64>> c(num_buffers * c_elements);
|
|
|
|
std::generate(a.begin(), a.end(), std::ref(f32rng));
|
|
std::fill(c.begin(), c.end(), nanf(""));
|
|
|
|
xnn_f16_scaleminmax_params params{
|
|
0x3C00 /* 1.0 */, 0x7C00 /* inf */, 0xFC00 /* -inf */};
|
|
|
|
size_t buffer_index = 0;
|
|
for (auto _ : state) {
|
|
// Use circular buffers (exceeding cache size) and prefetch to control cache state:
|
|
// - A is always in L1 cache (if fits, otherwise L2, L3, etc)
|
|
// - W, Kmap, and Nmap is not in cache (for any cache level)
|
|
// - C is not in cache (for any cache level)
|
|
state.PauseTiming();
|
|
benchmark::utils::PrefetchToL1(a.data(), a.size() * sizeof(uint16_t));
|
|
buffer_index = (buffer_index + 1) % num_buffers;
|
|
state.ResumeTiming();
|
|
|
|
spmm(mc * sizeof(uint16_t), nc,
|
|
a.data() + a_offsets[buffer_index],
|
|
w.data() + buffer_index * w_elements,
|
|
dmap.data() + buffer_index * dmap_elements,
|
|
nmap.data() + buffer_index * nmap_elements,
|
|
c.data() + buffer_index * c_elements, mc * sizeof(uint16_t),
|
|
¶ms);
|
|
}
|
|
|
|
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
|
|
if (cpu_frequency != 0) {
|
|
state.counters["cpufreq"] = cpu_frequency;
|
|
}
|
|
|
|
state.counters["FLOPS"] = benchmark::Counter(
|
|
uint64_t(state.iterations()) * 2 * mc * num_nonzeroes, benchmark::Counter::kIsRate);
|
|
|
|
state.counters["EffFLOPS"] = benchmark::Counter(
|
|
uint64_t(state.iterations()) * 2 * mc * nc * kc, benchmark::Counter::kIsRate);
|
|
}
|
|
|
|
|
|
#if XNN_ARCH_ARM64
|
|
static void spmm80_8x1__neonfp16arith(benchmark::State& state, const char* net) {
|
|
SpMMBenchmark(state, xnn_f16_spmm_minmax_ukernel_8x1__neonfp16arith, 8, 1, 0.8f);
|
|
}
|
|
static void spmm80_8x1__neonfp16arith_x2(benchmark::State& state, const char* net) {
|
|
SpMMBenchmark(state, xnn_f16_spmm_minmax_ukernel_8x1__neonfp16arith_x2, 8, 1, 0.8f);
|
|
}
|
|
static void spmm80_16x1__neonfp16arith(benchmark::State& state, const char* net) {
|
|
SpMMBenchmark(state, xnn_f16_spmm_minmax_ukernel_16x1__neonfp16arith, 16, 1, 0.8f);
|
|
}
|
|
static void spmm80_16x1__neonfp16arith_x2(benchmark::State& state, const char* net) {
|
|
SpMMBenchmark(state, xnn_f16_spmm_minmax_ukernel_16x1__neonfp16arith_x2, 16, 1, 0.8f);
|
|
}
|
|
static void spmm80_24x1__neonfp16arith(benchmark::State& state, const char* net) {
|
|
SpMMBenchmark(state, xnn_f16_spmm_minmax_ukernel_24x1__neonfp16arith, 24, 1, 0.8f);
|
|
}
|
|
static void spmm80_24x1__neonfp16arith_x2(benchmark::State& state, const char* net) {
|
|
SpMMBenchmark(state, xnn_f16_spmm_minmax_ukernel_24x1__neonfp16arith_x2, 24, 1, 0.8f);
|
|
}
|
|
static void spmm80_32x1__neonfp16arith(benchmark::State& state, const char* net) {
|
|
SpMMBenchmark(state, xnn_f16_spmm_minmax_ukernel_32x1__neonfp16arith, 32, 1, 0.8f);
|
|
}
|
|
static void spmm80_32x1__neonfp16arith_x2(benchmark::State& state, const char* net) {
|
|
SpMMBenchmark(state, xnn_f16_spmm_minmax_ukernel_32x1__neonfp16arith_x2, 32, 1, 0.8f);
|
|
}
|
|
|
|
BENCHMARK_SPMM(spmm80_8x1__neonfp16arith)
|
|
BENCHMARK_SPMM(spmm80_8x1__neonfp16arith_x2)
|
|
BENCHMARK_SPMM(spmm80_16x1__neonfp16arith)
|
|
BENCHMARK_SPMM(spmm80_16x1__neonfp16arith_x2)
|
|
BENCHMARK_SPMM(spmm80_24x1__neonfp16arith)
|
|
BENCHMARK_SPMM(spmm80_24x1__neonfp16arith_x2)
|
|
BENCHMARK_SPMM(spmm80_32x1__neonfp16arith)
|
|
BENCHMARK_SPMM(spmm80_32x1__neonfp16arith_x2)
|
|
#endif // XNN_ARCH_ARM64
|
|
|
|
#ifndef XNNPACK_BENCHMARK_NO_MAIN
|
|
BENCHMARK_MAIN();
|
|
#endif
|