You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

336 lines
13 KiB

// Copyright (c) Facebook, Inc. and its affiliates.
// All rights reserved.
//
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <algorithm>
#include <cfloat>
#include <chrono>
#include <cmath>
#include <functional>
#include <limits>
#include <mutex>
#include <random>
#include <vector>
#include <benchmark/benchmark.h>
#ifdef BENCHMARK_GEMMLOWP
#include "gemmlowp/public/gemmlowp.h"
#endif // BENCHMARK_GEMMLOWP
#ifdef BENCHMARK_RUY
#include "ruy/ruy.h"
#endif // BENCHMARK_RUY
#include "bench/gemm.h"
#include "bench/utils.h"
#include <xnnpack/AlignedAllocator.h>
#include <xnnpack/common.h>
#include <xnnpack/gemm.h>
#include <xnnpack/pack.h>
#include <xnnpack/params-init.h>
#include <xnnpack/params.h>
static void GEMMBenchmark(benchmark::State& state,
xnn_qu8_gemm_ukernel_function gemm,
size_t mr, size_t nr, size_t kr, size_t sr,
benchmark::utils::IsaCheckFunction isa_check = nullptr)
{
const size_t mc = state.range(0);
const size_t nc = state.range(1);
const size_t kc = state.range(2);
const size_t nc_stride = benchmark::utils::RoundUp(nc, nr);
const size_t kc_stride = benchmark::utils::RoundUp(kc, kr);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto i32rng = std::bind(std::uniform_int_distribution<int32_t>(-10000, 10000), std::ref(rng));
auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), std::ref(rng));
std::vector<uint8_t> a(mc * kc);
std::generate(a.begin(), a.end(), std::ref(u8rng));
std::vector<uint8_t> k(nc * kc);
std::generate(k.begin(), k.end(), std::ref(u8rng));
std::vector<int32_t> b(nc);
std::generate(b.begin(), b.end(), std::ref(i32rng));
const size_t w_elements = kc_stride * nc_stride + nc_stride * sizeof(int32_t) / sizeof(uint8_t);
const size_t c_elements = mc * nc;
const size_t num_buffers = 1 +
benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(),
sizeof(uint8_t) * (w_elements + c_elements));
std::vector<uint8_t, AlignedAllocator<uint8_t, 32>> w(w_elements * num_buffers);
std::fill(w.begin(), w.end(), 0);
const xnn_qu8_packing_params packing_params = { 127, 127 };
xnn_pack_qu8_gemm_goi_w(1 /* groups */, nc, kc, nr, kr, sr, k.data(), b.data(), w.data(), &packing_params);
std::vector<uint8_t> c(c_elements * num_buffers);
std::fill(c.begin(), c.end(), 0xA5);
union xnn_qu8_gemm_params quantization_params =
xnn_init_qu8_gemm_params(127, 0.75f, 127, 1, 254);
size_t buffer_index = 0;
for (auto _ : state) {
// Use circular buffers (exceeding cache size) and prefetch to control cache state:
// - A is always in L1 cache (if fits, otherwise L2, L3, etc)
// - W is not in cache (for any cache level)
// - C is not in cache (for any cache level)
state.PauseTiming();
benchmark::utils::PrefetchToL1(a.data(), a.size() * sizeof(uint8_t));
buffer_index = (buffer_index + 1) % num_buffers;
state.ResumeTiming();
for (uint32_t m = 0; m < mc; m += mr) {
const uint32_t mb = min(mc - m, mr);
for (uint32_t n = 0; n < nc; n += nr) {
const uint32_t nb = min(nc - n, nr);
gemm(
mb, nb, kc * sizeof(uint8_t),
a.data() + m * kc, kc * sizeof(uint8_t),
w.data() + (w_elements * buffer_index + n * (kc_stride + sizeof(int32_t))) / sizeof(uint8_t),
c.data() + (mc * buffer_index + m) * nc + n, nc * sizeof(uint8_t), nr * sizeof(uint8_t),
&quantization_params);
}
}
}
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
if (cpu_frequency != 0) {
state.counters["cpufreq"] = cpu_frequency;
}
state.counters["OPS"] = benchmark::Counter(
uint64_t(state.iterations()) * 2 * mc * nc * kc, benchmark::Counter::kIsRate);
}
#ifdef BENCHMARK_GEMMLOWP
struct GemmlowpOutputPipeline {
typedef gemmlowp::VectorMap<const int32_t, gemmlowp::VectorShape::Col> ColVectorMap;
typedef std::tuple<
gemmlowp::OutputStageBiasAddition<ColVectorMap>,
gemmlowp::OutputStageQuantizeDownInt32ToUint8ScaleByFixedPoint,
gemmlowp::OutputStageClamp,
gemmlowp::OutputStageSaturatingCastToUint8>
Pipeline;
static Pipeline Make(
const int32_t* bias_data,
int output_rows,
int32_t output_offset,
int32_t output_multiplier,
int output_shift,
int32_t output_activation_min,
int32_t output_activation_max)
{
ColVectorMap bias_vector(bias_data, output_rows);
gemmlowp::OutputStageBiasAddition<ColVectorMap> bias_addition_stage;
bias_addition_stage.bias_vector = bias_vector;
gemmlowp::OutputStageQuantizeDownInt32ToUint8ScaleByFixedPoint quantize_down_stage;
quantize_down_stage.result_offset_after_shift = output_offset;
quantize_down_stage.result_fixedpoint_multiplier = output_multiplier;
quantize_down_stage.result_shift = output_shift;
gemmlowp::OutputStageClamp clamp_stage;
clamp_stage.min = output_activation_min;
clamp_stage.max = output_activation_max;
gemmlowp::OutputStageSaturatingCastToUint8 saturating_cast_stage;
return std::make_tuple(bias_addition_stage, quantize_down_stage, clamp_stage, saturating_cast_stage);
}
};
static void GemmlowpBenchmark(benchmark::State& state, uint32_t threads)
{
const size_t mc = state.range(0);
const size_t nc = state.range(1);
const size_t kc = state.range(2);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto i32rng = std::bind(std::uniform_int_distribution<int32_t>(-10000, 10000), std::ref(rng));
auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), std::ref(rng));
std::vector<uint8_t> a(mc * kc);
std::generate(a.begin(), a.end(), std::ref(u8rng));
const size_t kElements = nc * kc;
const size_t bElements = nc;
const size_t c_elements = mc * nc;
const size_t num_buffers = 1 +
benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(),
kElements * sizeof(uint8_t) + bElements * sizeof(int32_t) + c_elements * sizeof(uint8_t));
std::vector<uint8_t> k(kElements * num_buffers);
std::generate(k.begin(), k.end(), std::ref(u8rng));
std::vector<int32_t> b(bElements * num_buffers);
std::generate(b.begin(), b.end(), std::ref(i32rng));
std::vector<uint8_t> c(c_elements * num_buffers);
std::fill(c.begin(), c.end(), 0xA5);
gemmlowp::MultiThreadGemmContext threadingContext;
threadingContext.set_max_num_threads(threads);
size_t buffer_index = 0;
for (auto _ : state) {
state.PauseTiming();
benchmark::utils::PrefetchToL1(a.data(), a.size() * sizeof(uint8_t));
buffer_index = (buffer_index + 1) % num_buffers;
state.ResumeTiming();
gemmlowp::MatrixMap<const uint8_t, gemmlowp::MapOrder::RowMajor> AM(a.data(), mc, kc, kc);
gemmlowp::MatrixMap<const uint8_t, gemmlowp::MapOrder::ColMajor> BM(k.data() + buffer_index * kElements, kc, nc, kc);
gemmlowp::MatrixMap<uint8_t, gemmlowp::MapOrder::RowMajor> CM(c.data() + buffer_index * c_elements, mc, nc, nc);
const auto& outputPipeline = GemmlowpOutputPipeline::Make(b.data() + buffer_index * bElements, nc, 127, 127, 127, 0, 255);
gemmlowp::GemmWithOutputPipeline<uint8_t, uint8_t, gemmlowp::L8R8WithLhsNonzeroBitDepthParams>(
&threadingContext, AM, BM, &CM, 127, 127, outputPipeline);
}
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
if (cpu_frequency != 0) {
state.counters["cpufreq"] = cpu_frequency;
}
state.counters["OPS"] = benchmark::Counter(
uint64_t(state.iterations()) * 2 * mc * nc * kc, benchmark::Counter::kIsRate);
}
static void gemmlowp_st(benchmark::State& state, const char* net)
{
GemmlowpBenchmark(state, 1);
}
#endif // BENCHMARK_GEMMLOWP
#ifdef BENCHMARK_RUY
static void RuyBenchmark(benchmark::State& state, size_t threads)
{
const size_t mc = state.range(0);
const size_t nc = state.range(1);
const size_t kc = state.range(2);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto i32rng = std::bind(std::uniform_int_distribution<int32_t>(-10000, 10000), std::ref(rng));
auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), std::ref(rng));
const size_t num_buffers = 1 +
benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(),
nc * (sizeof(uint8_t) * (mc + kc) + sizeof(int32_t)));
std::vector<uint8_t> a(mc * kc);
std::generate(a.begin(), a.end(), std::ref(u8rng));
std::vector<uint8_t> k(num_buffers * nc * kc);
std::generate(k.begin(), k.end(), std::ref(u8rng));
std::vector<int32_t> b(num_buffers * nc);
std::generate(b.begin(), b.end(), std::ref(i32rng));
std::vector<uint8_t> c(num_buffers * nc * mc);
std::fill(c.begin(), c.end(), std::nanf(""));
// Note: context must be static to avoid the cost of re-creating it for each benchmark.
static ruy::Context context;
context.set_max_num_threads(threads);
ruy::Matrix<uint8_t> ruy_a;
ruy::MakeSimpleLayout(nc, kc, ruy::Order::kRowMajor, ruy_a.mutable_layout());
ruy_a.set_zero_point(127);
ruy::Matrix<uint8_t> ruy_b;
ruy::MakeSimpleLayout(kc, mc, ruy::Order::kColMajor, ruy_b.mutable_layout());
ruy_b.set_data(a.data());
ruy_b.set_zero_point(127);
ruy::Matrix<uint8_t> ruy_c;
ruy::MakeSimpleLayout(nc, mc, ruy::Order::kColMajor, ruy_c.mutable_layout());
ruy_c.set_zero_point(127);
ruy::MulParams<int32_t, uint8_t> mul_params;
mul_params.set_multiplier_fixedpoint(0x40000000);
// ruy::Context uses deferred initialization, which affects percieved GEMM performance. Initialization happens during
// the first GEMM calls, and per Benoit Jacob it takes up to ~250 milliseconds for performance to stabilize.
// Thus, on the first benchmark, we compute GEMM for 500 milliseconds (to be safe) without recording performance, and
// keep the ruy::Context object initialized (by being static) between subsequent benchmarks.
static std::once_flag warmup;
std::call_once(warmup, [&](){
auto start = std::chrono::steady_clock::now();
do {
ruy_a.set_data(k.data());
ruy_c.set_data(c.data());
mul_params.set_bias(b.data());
ruy::Mul(ruy_a, ruy_b, mul_params, &context, &ruy_c);
} while (std::chrono::duration<double>(std::chrono::steady_clock::now() - start).count() < 0.5);
});
size_t buffer_index = 0;
for (auto _ : state) {
// Use circular buffers (exceeding cache size) and prefetch to control cache state:
// - A is always in L1 cache (if fits, otherwise L2, L3, etc)
// - K is not in cache (for any cache level)
// - B is not in cache (for any cache level)
// - C is not in cache (for any cache level)
state.PauseTiming();
benchmark::utils::PrefetchToL1(a.data(), a.size() * sizeof(uint8_t));
buffer_index = (buffer_index + 1) % num_buffers;
state.ResumeTiming();
ruy_a.set_data(k.data() + buffer_index * nc * kc);
ruy_c.set_data(c.data() + buffer_index * mc * nc);
mul_params.set_bias(b.data() + buffer_index * nc);
ruy::Mul(ruy_a, ruy_b, mul_params, &context, &ruy_c);
}
const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
if (cpu_frequency != 0) {
state.counters["cpufreq"] = cpu_frequency;
}
state.counters["OPS"] = benchmark::Counter(
uint64_t(state.iterations()) * 2 * mc * nc * kc, benchmark::Counter::kIsRate);
}
static void ruy_st(benchmark::State& state, const char* net)
{
RuyBenchmark(state, 1);
}
#endif // BENCHMARK_RUY
#if XNN_ARCH_ARM || XNN_ARCH_ARM64
static void qu8_gemm_4x8__neon(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_qu8_gemm_minmax_ukernel_4x8__neon, 4, 8, 1, 1, benchmark::utils::CheckNEON);
}
static void qu8_gemm_8x8__neon(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_qu8_gemm_minmax_ukernel_8x8__neon, 8, 8, 1, 1, benchmark::utils::CheckNEON);
}
BENCHMARK_GEMM(qu8_gemm_4x8__neon)
BENCHMARK_GEMM(qu8_gemm_8x8__neon)
#endif
#if XNN_ARCH_X86 || XNN_ARCH_X86_64
static void qu8_gemm_4x4c2__sse2(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_qu8_gemm_minmax_ukernel_4x4c2__sse2, 4, 4, 2, 1);
}
static void qu8_gemm_2x4c8__sse2(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_qu8_gemm_minmax_ukernel_2x4c8__sse2, 2, 4, 8, 1);
}
BENCHMARK_GEMM(qu8_gemm_4x4c2__sse2)
BENCHMARK_GEMM(qu8_gemm_2x4c8__sse2)
#endif
#ifdef BENCHMARK_RUY
BENCHMARK_GEMM(ruy_st)
#endif // BENCHMARK_RUY
#ifdef BENCHMARK_GEMMLOWP
BENCHMARK_GEMM(gemmlowp_st)
#endif // BENCHMARK_GEMMLOWP
#ifndef XNNPACK_BENCHMARK_NO_MAIN
BENCHMARK_MAIN();
#endif