You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2417 lines
93 KiB

// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <xnnpack.h>
#include <array>
#include <algorithm>
#include <functional>
#include <iostream>
#include <limits>
#include <random>
#include "models/models.h"
namespace models {
ExecutionPlan FP32SparseMobileNetV2(float sparsity, pthreadpool_t threadpool) {
alignas(16) static std::array<float, 150528> v0;
alignas(16) static std::array<float, 401408> v1;
alignas(16) static std::array<float, 401408> v2;
alignas(16) static std::array<float, 200704> v3;
alignas(16) static std::array<float, 1204224> v4;
alignas(16) static std::array<float, 301056> v5;
alignas(16) static std::array<float, 75264> v6;
alignas(16) static std::array<float, 451584> v7;
alignas(16) static std::array<float, 451584> v8;
alignas(16) static std::array<float, 75264> v9;
alignas(16) static std::array<float, 75264> v10;
alignas(16) static std::array<float, 451584> v11;
alignas(16) static std::array<float, 112896> v12;
alignas(16) static std::array<float, 25088> v13;
alignas(16) static std::array<float, 150528> v14;
alignas(16) static std::array<float, 150528> v15;
alignas(16) static std::array<float, 25088> v16;
alignas(16) static std::array<float, 25088> v17;
alignas(16) static std::array<float, 150528> v18;
alignas(16) static std::array<float, 150528> v19;
alignas(16) static std::array<float, 25088> v20;
alignas(16) static std::array<float, 25088> v21;
alignas(16) static std::array<float, 150528> v22;
alignas(16) static std::array<float, 37632> v23;
alignas(16) static std::array<float, 12544> v24;
alignas(16) static std::array<float, 75264> v25;
alignas(16) static std::array<float, 75264> v26;
alignas(16) static std::array<float, 12544> v27;
alignas(16) static std::array<float, 12544> v28;
alignas(16) static std::array<float, 75264> v29;
alignas(16) static std::array<float, 75264> v30;
alignas(16) static std::array<float, 12544> v31;
alignas(16) static std::array<float, 12544> v32;
alignas(16) static std::array<float, 75264> v33;
alignas(16) static std::array<float, 75264> v34;
alignas(16) static std::array<float, 12544> v35;
alignas(16) static std::array<float, 12544> v36;
alignas(16) static std::array<float, 75264> v37;
alignas(16) static std::array<float, 75264> v38;
alignas(16) static std::array<float, 18816> v39;
alignas(16) static std::array<float, 112896> v40;
alignas(16) static std::array<float, 112896> v41;
alignas(16) static std::array<float, 18816> v42;
alignas(16) static std::array<float, 18816> v43;
alignas(16) static std::array<float, 112896> v44;
alignas(16) static std::array<float, 112896> v45;
alignas(16) static std::array<float, 18816> v46;
alignas(16) static std::array<float, 18816> v47;
alignas(16) static std::array<float, 112896> v48;
alignas(16) static std::array<float, 28224> v49;
alignas(16) static std::array<float, 7840> v50;
alignas(16) static std::array<float, 47040> v51;
alignas(16) static std::array<float, 47040> v52;
alignas(16) static std::array<float, 7840> v53;
alignas(16) static std::array<float, 7840> v54;
alignas(16) static std::array<float, 47040> v55;
alignas(16) static std::array<float, 47040> v56;
alignas(16) static std::array<float, 7840> v57;
alignas(16) static std::array<float, 7840> v58;
alignas(16) static std::array<float, 47040> v59;
alignas(16) static std::array<float, 47040> v60;
alignas(16) static std::array<float, 15680> v61;
alignas(16) static std::array<float, 62720> v62;
alignas(16) static std::array<float, 1280> v63;
alignas(16) static std::array<float, 1001> v64;
alignas(16) static std::array<float, 864> w65;
alignas(16) static std::array<float, 32> w66;
alignas(16) static std::array<float, 288> w67;
alignas(16) static std::array<float, 32> w68;
alignas(16) static std::array<float, 512> w69;
alignas(16) static std::array<float, 16> w70;
alignas(16) static std::array<float, 1536> w71;
alignas(16) static std::array<float, 96> w72;
alignas(16) static std::array<float, 864> w73;
alignas(16) static std::array<float, 96> w74;
alignas(16) static std::array<float, 2304> w75;
alignas(16) static std::array<float, 24> w76;
alignas(16) static std::array<float, 3456> w77;
alignas(16) static std::array<float, 144> w78;
alignas(16) static std::array<float, 1296> w79;
alignas(16) static std::array<float, 144> w80;
alignas(16) static std::array<float, 3456> w81;
alignas(16) static std::array<float, 24> w82;
alignas(16) static std::array<float, 3456> w83;
alignas(16) static std::array<float, 144> w84;
alignas(16) static std::array<float, 1296> w85;
alignas(16) static std::array<float, 144> w86;
alignas(16) static std::array<float, 4608> w87;
alignas(16) static std::array<float, 32> w88;
alignas(16) static std::array<float, 6144> w89;
alignas(16) static std::array<float, 192> w90;
alignas(16) static std::array<float, 1728> w91;
alignas(16) static std::array<float, 192> w92;
alignas(16) static std::array<float, 6144> w93;
alignas(16) static std::array<float, 32> w94;
alignas(16) static std::array<float, 6144> w95;
alignas(16) static std::array<float, 192> w96;
alignas(16) static std::array<float, 1728> w97;
alignas(16) static std::array<float, 192> w98;
alignas(16) static std::array<float, 6144> w99;
alignas(16) static std::array<float, 32> w100;
alignas(16) static std::array<float, 6144> w101;
alignas(16) static std::array<float, 192> w102;
alignas(16) static std::array<float, 1728> w103;
alignas(16) static std::array<float, 192> w104;
alignas(16) static std::array<float, 12288> w105;
alignas(16) static std::array<float, 64> w106;
alignas(16) static std::array<float, 24576> w107;
alignas(16) static std::array<float, 384> w108;
alignas(16) static std::array<float, 3456> w109;
alignas(16) static std::array<float, 384> w110;
alignas(16) static std::array<float, 24576> w111;
alignas(16) static std::array<float, 64> w112;
alignas(16) static std::array<float, 24576> w113;
alignas(16) static std::array<float, 384> w114;
alignas(16) static std::array<float, 3456> w115;
alignas(16) static std::array<float, 384> w116;
alignas(16) static std::array<float, 24576> w117;
alignas(16) static std::array<float, 64> w118;
alignas(16) static std::array<float, 24576> w119;
alignas(16) static std::array<float, 384> w120;
alignas(16) static std::array<float, 3456> w121;
alignas(16) static std::array<float, 384> w122;
alignas(16) static std::array<float, 24576> w123;
alignas(16) static std::array<float, 64> w124;
alignas(16) static std::array<float, 24576> w125;
alignas(16) static std::array<float, 384> w126;
alignas(16) static std::array<float, 3456> w127;
alignas(16) static std::array<float, 384> w128;
alignas(16) static std::array<float, 36864> w129;
alignas(16) static std::array<float, 96> w130;
alignas(16) static std::array<float, 55296> w131;
alignas(16) static std::array<float, 576> w132;
alignas(16) static std::array<float, 5184> w133;
alignas(16) static std::array<float, 576> w134;
alignas(16) static std::array<float, 55296> w135;
alignas(16) static std::array<float, 96> w136;
alignas(16) static std::array<float, 55296> w137;
alignas(16) static std::array<float, 576> w138;
alignas(16) static std::array<float, 5184> w139;
alignas(16) static std::array<float, 576> w140;
alignas(16) static std::array<float, 55296> w141;
alignas(16) static std::array<float, 96> w142;
alignas(16) static std::array<float, 55296> w143;
alignas(16) static std::array<float, 576> w144;
alignas(16) static std::array<float, 5184> w145;
alignas(16) static std::array<float, 576> w146;
alignas(16) static std::array<float, 92160> w147;
alignas(16) static std::array<float, 160> w148;
alignas(16) static std::array<float, 153600> w149;
alignas(16) static std::array<float, 960> w150;
alignas(16) static std::array<float, 8640> w151;
alignas(16) static std::array<float, 960> w152;
alignas(16) static std::array<float, 153600> w153;
alignas(16) static std::array<float, 160> w154;
alignas(16) static std::array<float, 153600> w155;
alignas(16) static std::array<float, 960> w156;
alignas(16) static std::array<float, 8640> w157;
alignas(16) static std::array<float, 960> w158;
alignas(16) static std::array<float, 153600> w159;
alignas(16) static std::array<float, 160> w160;
alignas(16) static std::array<float, 153600> w161;
alignas(16) static std::array<float, 960> w162;
alignas(16) static std::array<float, 8640> w163;
alignas(16) static std::array<float, 960> w164;
alignas(16) static std::array<float, 307200> w165;
alignas(16) static std::array<float, 320> w166;
alignas(16) static std::array<float, 409600> w167;
alignas(16) static std::array<float, 1280> w168;
alignas(16) static std::array<float, 1281280> w169;
alignas(16) static std::array<float, 1001> w170;
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(-1.0f, +1.0f), std::ref(rng));
std::generate(v0.begin(), v0.end(), std::ref(f32rng));
std::generate(v1.begin(), v1.end(), std::ref(f32rng));
std::generate(v2.begin(), v2.end(), std::ref(f32rng));
std::generate(v3.begin(), v3.end(), std::ref(f32rng));
std::generate(v4.begin(), v4.end(), std::ref(f32rng));
std::generate(v5.begin(), v5.end(), std::ref(f32rng));
std::generate(v6.begin(), v6.end(), std::ref(f32rng));
std::generate(v7.begin(), v7.end(), std::ref(f32rng));
std::generate(v8.begin(), v8.end(), std::ref(f32rng));
std::generate(v9.begin(), v9.end(), std::ref(f32rng));
std::generate(v10.begin(), v10.end(), std::ref(f32rng));
std::generate(v11.begin(), v11.end(), std::ref(f32rng));
std::generate(v12.begin(), v12.end(), std::ref(f32rng));
std::generate(v13.begin(), v13.end(), std::ref(f32rng));
std::generate(v14.begin(), v14.end(), std::ref(f32rng));
std::generate(v15.begin(), v15.end(), std::ref(f32rng));
std::generate(v16.begin(), v16.end(), std::ref(f32rng));
std::generate(v17.begin(), v17.end(), std::ref(f32rng));
std::generate(v18.begin(), v18.end(), std::ref(f32rng));
std::generate(v19.begin(), v19.end(), std::ref(f32rng));
std::generate(v20.begin(), v20.end(), std::ref(f32rng));
std::generate(v21.begin(), v21.end(), std::ref(f32rng));
std::generate(v22.begin(), v22.end(), std::ref(f32rng));
std::generate(v23.begin(), v23.end(), std::ref(f32rng));
std::generate(v24.begin(), v24.end(), std::ref(f32rng));
std::generate(v25.begin(), v25.end(), std::ref(f32rng));
std::generate(v26.begin(), v26.end(), std::ref(f32rng));
std::generate(v27.begin(), v27.end(), std::ref(f32rng));
std::generate(v28.begin(), v28.end(), std::ref(f32rng));
std::generate(v29.begin(), v29.end(), std::ref(f32rng));
std::generate(v30.begin(), v30.end(), std::ref(f32rng));
std::generate(v31.begin(), v31.end(), std::ref(f32rng));
std::generate(v32.begin(), v32.end(), std::ref(f32rng));
std::generate(v33.begin(), v33.end(), std::ref(f32rng));
std::generate(v34.begin(), v34.end(), std::ref(f32rng));
std::generate(v35.begin(), v35.end(), std::ref(f32rng));
std::generate(v36.begin(), v36.end(), std::ref(f32rng));
std::generate(v37.begin(), v37.end(), std::ref(f32rng));
std::generate(v38.begin(), v38.end(), std::ref(f32rng));
std::generate(v39.begin(), v39.end(), std::ref(f32rng));
std::generate(v40.begin(), v40.end(), std::ref(f32rng));
std::generate(v41.begin(), v41.end(), std::ref(f32rng));
std::generate(v42.begin(), v42.end(), std::ref(f32rng));
std::generate(v43.begin(), v43.end(), std::ref(f32rng));
std::generate(v44.begin(), v44.end(), std::ref(f32rng));
std::generate(v45.begin(), v45.end(), std::ref(f32rng));
std::generate(v46.begin(), v46.end(), std::ref(f32rng));
std::generate(v47.begin(), v47.end(), std::ref(f32rng));
std::generate(v48.begin(), v48.end(), std::ref(f32rng));
std::generate(v49.begin(), v49.end(), std::ref(f32rng));
std::generate(v50.begin(), v50.end(), std::ref(f32rng));
std::generate(v51.begin(), v51.end(), std::ref(f32rng));
std::generate(v52.begin(), v52.end(), std::ref(f32rng));
std::generate(v53.begin(), v53.end(), std::ref(f32rng));
std::generate(v54.begin(), v54.end(), std::ref(f32rng));
std::generate(v55.begin(), v55.end(), std::ref(f32rng));
std::generate(v56.begin(), v56.end(), std::ref(f32rng));
std::generate(v57.begin(), v57.end(), std::ref(f32rng));
std::generate(v58.begin(), v58.end(), std::ref(f32rng));
std::generate(v59.begin(), v59.end(), std::ref(f32rng));
std::generate(v60.begin(), v60.end(), std::ref(f32rng));
std::generate(v61.begin(), v61.end(), std::ref(f32rng));
std::generate(v62.begin(), v62.end(), std::ref(f32rng));
std::generate(v63.begin(), v63.end(), std::ref(f32rng));
std::generate(v64.begin(), v64.end(), std::ref(f32rng));
std::generate(w65.begin(), w65.end(), std::ref(f32rng));
std::generate(w66.begin(), w66.end(), std::ref(f32rng));
std::generate(w67.begin(), w67.end(), std::ref(f32rng));
std::generate(w68.begin(), w68.end(), std::ref(f32rng));
std::fill(w69.begin(), w69.end(), 0.0f);
std::generate(w69.begin(), w69.end() - size_t(sparsity * w69.size()), std::ref(f32rng));
std::shuffle(w69.begin(), w69.end(), rng);
std::generate(w70.begin(), w70.end(), std::ref(f32rng));
std::fill(w71.begin(), w71.end(), 0.0f);
std::generate(w71.begin(), w71.end() - size_t(sparsity * w71.size()), std::ref(f32rng));
std::shuffle(w71.begin(), w71.end(), rng);
std::generate(w72.begin(), w72.end(), std::ref(f32rng));
std::generate(w73.begin(), w73.end(), std::ref(f32rng));
std::generate(w74.begin(), w74.end(), std::ref(f32rng));
std::fill(w75.begin(), w75.end(), 0.0f);
std::generate(w75.begin(), w75.end() - size_t(sparsity * w75.size()), std::ref(f32rng));
std::shuffle(w75.begin(), w75.end(), rng);
std::generate(w76.begin(), w76.end(), std::ref(f32rng));
std::fill(w77.begin(), w77.end(), 0.0f);
std::generate(w77.begin(), w77.end() - size_t(sparsity * w77.size()), std::ref(f32rng));
std::shuffle(w77.begin(), w77.end(), rng);
std::generate(w78.begin(), w78.end(), std::ref(f32rng));
std::generate(w79.begin(), w79.end(), std::ref(f32rng));
std::generate(w80.begin(), w80.end(), std::ref(f32rng));
std::fill(w81.begin(), w81.end(), 0.0f);
std::generate(w81.begin(), w81.end() - size_t(sparsity * w81.size()), std::ref(f32rng));
std::shuffle(w81.begin(), w81.end(), rng);
std::generate(w82.begin(), w82.end(), std::ref(f32rng));
std::fill(w83.begin(), w83.end(), 0.0f);
std::generate(w83.begin(), w83.end() - size_t(sparsity * w83.size()), std::ref(f32rng));
std::shuffle(w83.begin(), w83.end(), rng);
std::generate(w84.begin(), w84.end(), std::ref(f32rng));
std::generate(w85.begin(), w85.end(), std::ref(f32rng));
std::generate(w86.begin(), w86.end(), std::ref(f32rng));
std::fill(w87.begin(), w87.end(), 0.0f);
std::generate(w87.begin(), w87.end() - size_t(sparsity * w87.size()), std::ref(f32rng));
std::shuffle(w87.begin(), w87.end(), rng);
std::generate(w88.begin(), w88.end(), std::ref(f32rng));
std::fill(w89.begin(), w89.end(), 0.0f);
std::generate(w89.begin(), w89.end() - size_t(sparsity * w89.size()), std::ref(f32rng));
std::shuffle(w89.begin(), w89.end(), rng);
std::generate(w90.begin(), w90.end(), std::ref(f32rng));
std::generate(w91.begin(), w91.end(), std::ref(f32rng));
std::generate(w92.begin(), w92.end(), std::ref(f32rng));
std::fill(w93.begin(), w93.end(), 0.0f);
std::generate(w93.begin(), w93.end() - size_t(sparsity * w93.size()), std::ref(f32rng));
std::shuffle(w93.begin(), w93.end(), rng);
std::generate(w94.begin(), w94.end(), std::ref(f32rng));
std::fill(w95.begin(), w95.end(), 0.0f);
std::generate(w95.begin(), w95.end() - size_t(sparsity * w95.size()), std::ref(f32rng));
std::shuffle(w95.begin(), w95.end(), rng);
std::generate(w96.begin(), w96.end(), std::ref(f32rng));
std::generate(w97.begin(), w97.end(), std::ref(f32rng));
std::generate(w98.begin(), w98.end(), std::ref(f32rng));
std::fill(w99.begin(), w99.end(), 0.0f);
std::generate(w99.begin(), w99.end() - size_t(sparsity * w99.size()), std::ref(f32rng));
std::shuffle(w99.begin(), w99.end(), rng);
std::generate(w100.begin(), w100.end(), std::ref(f32rng));
std::fill(w101.begin(), w101.end(), 0.0f);
std::generate(w101.begin(), w101.end() - size_t(sparsity * w101.size()), std::ref(f32rng));
std::shuffle(w101.begin(), w101.end(), rng);
std::generate(w102.begin(), w102.end(), std::ref(f32rng));
std::generate(w103.begin(), w103.end(), std::ref(f32rng));
std::generate(w104.begin(), w104.end(), std::ref(f32rng));
std::fill(w105.begin(), w105.end(), 0.0f);
std::generate(w105.begin(), w105.end() - size_t(sparsity * w105.size()), std::ref(f32rng));
std::shuffle(w105.begin(), w105.end(), rng);
std::generate(w106.begin(), w106.end(), std::ref(f32rng));
std::fill(w107.begin(), w107.end(), 0.0f);
std::generate(w107.begin(), w107.end() - size_t(sparsity * w107.size()), std::ref(f32rng));
std::shuffle(w107.begin(), w107.end(), rng);
std::generate(w108.begin(), w108.end(), std::ref(f32rng));
std::generate(w109.begin(), w109.end(), std::ref(f32rng));
std::generate(w110.begin(), w110.end(), std::ref(f32rng));
std::fill(w111.begin(), w111.end(), 0.0f);
std::generate(w111.begin(), w111.end() - size_t(sparsity * w111.size()), std::ref(f32rng));
std::shuffle(w111.begin(), w111.end(), rng);
std::generate(w112.begin(), w112.end(), std::ref(f32rng));
std::fill(w113.begin(), w113.end(), 0.0f);
std::generate(w113.begin(), w113.end() - size_t(sparsity * w113.size()), std::ref(f32rng));
std::shuffle(w113.begin(), w113.end(), rng);
std::generate(w114.begin(), w114.end(), std::ref(f32rng));
std::generate(w115.begin(), w115.end(), std::ref(f32rng));
std::generate(w116.begin(), w116.end(), std::ref(f32rng));
std::fill(w117.begin(), w117.end(), 0.0f);
std::generate(w117.begin(), w117.end() - size_t(sparsity * w117.size()), std::ref(f32rng));
std::shuffle(w117.begin(), w117.end(), rng);
std::generate(w118.begin(), w118.end(), std::ref(f32rng));
std::fill(w119.begin(), w119.end(), 0.0f);
std::generate(w119.begin(), w119.end() - size_t(sparsity * w119.size()), std::ref(f32rng));
std::shuffle(w119.begin(), w119.end(), rng);
std::generate(w120.begin(), w120.end(), std::ref(f32rng));
std::generate(w121.begin(), w121.end(), std::ref(f32rng));
std::generate(w122.begin(), w122.end(), std::ref(f32rng));
std::fill(w123.begin(), w123.end(), 0.0f);
std::generate(w123.begin(), w123.end() - size_t(sparsity * w123.size()), std::ref(f32rng));
std::shuffle(w123.begin(), w123.end(), rng);
std::generate(w124.begin(), w124.end(), std::ref(f32rng));
std::fill(w125.begin(), w125.end(), 0.0f);
std::generate(w125.begin(), w125.end() - size_t(sparsity * w125.size()), std::ref(f32rng));
std::shuffle(w125.begin(), w125.end(), rng);
std::generate(w126.begin(), w126.end(), std::ref(f32rng));
std::generate(w127.begin(), w127.end(), std::ref(f32rng));
std::generate(w128.begin(), w128.end(), std::ref(f32rng));
std::fill(w129.begin(), w129.end(), 0.0f);
std::generate(w129.begin(), w129.end() - size_t(sparsity * w129.size()), std::ref(f32rng));
std::shuffle(w129.begin(), w129.end(), rng);
std::generate(w130.begin(), w130.end(), std::ref(f32rng));
std::fill(w131.begin(), w131.end(), 0.0f);
std::generate(w131.begin(), w131.end() - size_t(sparsity * w131.size()), std::ref(f32rng));
std::shuffle(w131.begin(), w131.end(), rng);
std::generate(w132.begin(), w132.end(), std::ref(f32rng));
std::generate(w133.begin(), w133.end(), std::ref(f32rng));
std::generate(w134.begin(), w134.end(), std::ref(f32rng));
std::fill(w135.begin(), w135.end(), 0.0f);
std::generate(w135.begin(), w135.end() - size_t(sparsity * w135.size()), std::ref(f32rng));
std::shuffle(w135.begin(), w135.end(), rng);
std::generate(w136.begin(), w136.end(), std::ref(f32rng));
std::fill(w137.begin(), w137.end(), 0.0f);
std::generate(w137.begin(), w137.end() - size_t(sparsity * w137.size()), std::ref(f32rng));
std::shuffle(w137.begin(), w137.end(), rng);
std::generate(w138.begin(), w138.end(), std::ref(f32rng));
std::generate(w139.begin(), w139.end(), std::ref(f32rng));
std::generate(w140.begin(), w140.end(), std::ref(f32rng));
std::fill(w141.begin(), w141.end(), 0.0f);
std::generate(w141.begin(), w141.end() - size_t(sparsity * w141.size()), std::ref(f32rng));
std::shuffle(w141.begin(), w141.end(), rng);
std::generate(w142.begin(), w142.end(), std::ref(f32rng));
std::fill(w143.begin(), w143.end(), 0.0f);
std::generate(w143.begin(), w143.end() - size_t(sparsity * w143.size()), std::ref(f32rng));
std::shuffle(w143.begin(), w143.end(), rng);
std::generate(w144.begin(), w144.end(), std::ref(f32rng));
std::generate(w145.begin(), w145.end(), std::ref(f32rng));
std::generate(w146.begin(), w146.end(), std::ref(f32rng));
std::fill(w147.begin(), w147.end(), 0.0f);
std::generate(w147.begin(), w147.end() - size_t(sparsity * w147.size()), std::ref(f32rng));
std::shuffle(w147.begin(), w147.end(), rng);
std::generate(w148.begin(), w148.end(), std::ref(f32rng));
std::fill(w149.begin(), w149.end(), 0.0f);
std::generate(w149.begin(), w149.end() - size_t(sparsity * w149.size()), std::ref(f32rng));
std::shuffle(w149.begin(), w149.end(), rng);
std::generate(w150.begin(), w150.end(), std::ref(f32rng));
std::generate(w151.begin(), w151.end(), std::ref(f32rng));
std::generate(w152.begin(), w152.end(), std::ref(f32rng));
std::fill(w153.begin(), w153.end(), 0.0f);
std::generate(w153.begin(), w153.end() - size_t(sparsity * w153.size()), std::ref(f32rng));
std::shuffle(w153.begin(), w153.end(), rng);
std::generate(w154.begin(), w154.end(), std::ref(f32rng));
std::fill(w155.begin(), w155.end(), 0.0f);
std::generate(w155.begin(), w155.end() - size_t(sparsity * w155.size()), std::ref(f32rng));
std::shuffle(w155.begin(), w155.end(), rng);
std::generate(w156.begin(), w156.end(), std::ref(f32rng));
std::generate(w157.begin(), w157.end(), std::ref(f32rng));
std::generate(w158.begin(), w158.end(), std::ref(f32rng));
std::fill(w159.begin(), w159.end(), 0.0f);
std::generate(w159.begin(), w159.end() - size_t(sparsity * w159.size()), std::ref(f32rng));
std::shuffle(w159.begin(), w159.end(), rng);
std::generate(w160.begin(), w160.end(), std::ref(f32rng));
std::fill(w161.begin(), w161.end(), 0.0f);
std::generate(w161.begin(), w161.end() - size_t(sparsity * w161.size()), std::ref(f32rng));
std::shuffle(w161.begin(), w161.end(), rng);
std::generate(w162.begin(), w162.end(), std::ref(f32rng));
std::generate(w163.begin(), w163.end(), std::ref(f32rng));
std::generate(w164.begin(), w164.end(), std::ref(f32rng));
std::fill(w165.begin(), w165.end(), 0.0f);
std::generate(w165.begin(), w165.end() - size_t(sparsity * w165.size()), std::ref(f32rng));
std::shuffle(w165.begin(), w165.end(), rng);
std::generate(w166.begin(), w166.end(), std::ref(f32rng));
std::fill(w167.begin(), w167.end(), 0.0f);
std::generate(w167.begin(), w167.end() - size_t(sparsity * w167.size()), std::ref(f32rng));
std::shuffle(w167.begin(), w167.end(), rng);
std::generate(w168.begin(), w168.end(), std::ref(f32rng));
std::fill(w169.begin(), w169.end(), 0.0f);
std::generate(w169.begin(), w169.end() - size_t(sparsity * w169.size()), std::ref(f32rng));
std::shuffle(w169.begin(), w169.end(), rng);
std::generate(w170.begin(), w170.end(), std::ref(f32rng));
ExecutionPlan operators;
xnn_status status;
xnn_operator_t op0 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
1 /* top padding */, 1 /* right padding */,
1 /* bottom padding */, 1 /* left padding */,
3 /* kernel height */, 3 /* kernel width */,
2 /* subsampling height */, 2 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
1 /* groups */,
3 /* input channels per group */,
32 /* output_channels_per_group */,
3 /* input pixel stride */,
32 /* output pixel stride */,
w65.data(), w66.data(),
0.0f /* output min */, 6.0f /* output max */,
XNN_FLAG_INPUT_NHWC /* flags */,
&op0);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #0" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op0, xnn_delete_operator);
xnn_operator_t op1 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
1 /* top padding */, 1 /* right padding */,
1 /* bottom padding */, 1 /* left padding */,
3 /* kernel height */, 3 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
32 /* groups */,
1 /* input channels per group */,
1 /* output_channels_per_group */,
32 /* input pixel stride */,
32 /* output pixel stride */,
w67.data(), w68.data(),
0.0f /* output min */, 6.0f /* output max */,
0 /* flags */,
&op1);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #1" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op1, xnn_delete_operator);
xnn_operator_t op2 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
0 /* top padding */, 0 /* right padding */,
0 /* bottom padding */, 0 /* left padding */,
1 /* kernel height */, 1 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
1 /* groups */,
32 /* input channels per group */,
16 /* output_channels_per_group */,
32 /* input pixel stride */,
16 /* output pixel stride */,
w69.data(), w70.data(),
-std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
0 /* flags */,
&op2);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #2" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op2, xnn_delete_operator);
xnn_operator_t op3 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
0 /* top padding */, 0 /* right padding */,
0 /* bottom padding */, 0 /* left padding */,
1 /* kernel height */, 1 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
1 /* groups */,
16 /* input channels per group */,
96 /* output_channels_per_group */,
16 /* input pixel stride */,
96 /* output pixel stride */,
w71.data(), w72.data(),
0.0f /* output min */, 6.0f /* output max */,
0 /* flags */,
&op3);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #3" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op3, xnn_delete_operator);
xnn_operator_t op4 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
1 /* top padding */, 1 /* right padding */,
1 /* bottom padding */, 1 /* left padding */,
3 /* kernel height */, 3 /* kernel width */,
2 /* subsampling height */, 2 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
96 /* groups */,
1 /* input channels per group */,
1 /* output_channels_per_group */,
96 /* input pixel stride */,
96 /* output pixel stride */,
w73.data(), w74.data(),
0.0f /* output min */, 6.0f /* output max */,
0 /* flags */,
&op4);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #4" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op4, xnn_delete_operator);
xnn_operator_t op5 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
0 /* top padding */, 0 /* right padding */,
0 /* bottom padding */, 0 /* left padding */,
1 /* kernel height */, 1 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
1 /* groups */,
96 /* input channels per group */,
24 /* output_channels_per_group */,
96 /* input pixel stride */,
24 /* output pixel stride */,
w75.data(), w76.data(),
-std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
0 /* flags */,
&op5);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #5" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op5, xnn_delete_operator);
xnn_operator_t op6 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
0 /* top padding */, 0 /* right padding */,
0 /* bottom padding */, 0 /* left padding */,
1 /* kernel height */, 1 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
1 /* groups */,
24 /* input channels per group */,
144 /* output_channels_per_group */,
24 /* input pixel stride */,
144 /* output pixel stride */,
w77.data(), w78.data(),
0.0f /* output min */, 6.0f /* output max */,
0 /* flags */,
&op6);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #6" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op6, xnn_delete_operator);
xnn_operator_t op7 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
1 /* top padding */, 1 /* right padding */,
1 /* bottom padding */, 1 /* left padding */,
3 /* kernel height */, 3 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
144 /* groups */,
1 /* input channels per group */,
1 /* output_channels_per_group */,
144 /* input pixel stride */,
144 /* output pixel stride */,
w79.data(), w80.data(),
0.0f /* output min */, 6.0f /* output max */,
0 /* flags */,
&op7);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #7" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op7, xnn_delete_operator);
xnn_operator_t op8 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
0 /* top padding */, 0 /* right padding */,
0 /* bottom padding */, 0 /* left padding */,
1 /* kernel height */, 1 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
1 /* groups */,
144 /* input channels per group */,
24 /* output_channels_per_group */,
144 /* input pixel stride */,
24 /* output pixel stride */,
w81.data(), w82.data(),
-std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
0 /* flags */,
&op8);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #8" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op8, xnn_delete_operator);
xnn_operator_t op9 = nullptr;
status = xnn_create_add_nd_f32(
-std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
0 /* flags */,
&op9);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #9" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op9, xnn_delete_operator);
xnn_operator_t op10 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
0 /* top padding */, 0 /* right padding */,
0 /* bottom padding */, 0 /* left padding */,
1 /* kernel height */, 1 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
1 /* groups */,
24 /* input channels per group */,
144 /* output_channels_per_group */,
24 /* input pixel stride */,
144 /* output pixel stride */,
w83.data(), w84.data(),
0.0f /* output min */, 6.0f /* output max */,
0 /* flags */,
&op10);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #10" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op10, xnn_delete_operator);
xnn_operator_t op11 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
1 /* top padding */, 1 /* right padding */,
1 /* bottom padding */, 1 /* left padding */,
3 /* kernel height */, 3 /* kernel width */,
2 /* subsampling height */, 2 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
144 /* groups */,
1 /* input channels per group */,
1 /* output_channels_per_group */,
144 /* input pixel stride */,
144 /* output pixel stride */,
w85.data(), w86.data(),
0.0f /* output min */, 6.0f /* output max */,
0 /* flags */,
&op11);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #11" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op11, xnn_delete_operator);
xnn_operator_t op12 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
0 /* top padding */, 0 /* right padding */,
0 /* bottom padding */, 0 /* left padding */,
1 /* kernel height */, 1 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
1 /* groups */,
144 /* input channels per group */,
32 /* output_channels_per_group */,
144 /* input pixel stride */,
32 /* output pixel stride */,
w87.data(), w88.data(),
-std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
0 /* flags */,
&op12);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #12" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op12, xnn_delete_operator);
xnn_operator_t op13 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
0 /* top padding */, 0 /* right padding */,
0 /* bottom padding */, 0 /* left padding */,
1 /* kernel height */, 1 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
1 /* groups */,
32 /* input channels per group */,
192 /* output_channels_per_group */,
32 /* input pixel stride */,
192 /* output pixel stride */,
w89.data(), w90.data(),
0.0f /* output min */, 6.0f /* output max */,
0 /* flags */,
&op13);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #13" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op13, xnn_delete_operator);
xnn_operator_t op14 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
1 /* top padding */, 1 /* right padding */,
1 /* bottom padding */, 1 /* left padding */,
3 /* kernel height */, 3 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
192 /* groups */,
1 /* input channels per group */,
1 /* output_channels_per_group */,
192 /* input pixel stride */,
192 /* output pixel stride */,
w91.data(), w92.data(),
0.0f /* output min */, 6.0f /* output max */,
0 /* flags */,
&op14);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #14" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op14, xnn_delete_operator);
xnn_operator_t op15 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
0 /* top padding */, 0 /* right padding */,
0 /* bottom padding */, 0 /* left padding */,
1 /* kernel height */, 1 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
1 /* groups */,
192 /* input channels per group */,
32 /* output_channels_per_group */,
192 /* input pixel stride */,
32 /* output pixel stride */,
w93.data(), w94.data(),
-std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
0 /* flags */,
&op15);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #15" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op15, xnn_delete_operator);
xnn_operator_t op16 = nullptr;
status = xnn_create_add_nd_f32(
-std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
0 /* flags */,
&op16);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #16" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op16, xnn_delete_operator);
xnn_operator_t op17 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
0 /* top padding */, 0 /* right padding */,
0 /* bottom padding */, 0 /* left padding */,
1 /* kernel height */, 1 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
1 /* groups */,
32 /* input channels per group */,
192 /* output_channels_per_group */,
32 /* input pixel stride */,
192 /* output pixel stride */,
w95.data(), w96.data(),
0.0f /* output min */, 6.0f /* output max */,
0 /* flags */,
&op17);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #17" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op17, xnn_delete_operator);
xnn_operator_t op18 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
1 /* top padding */, 1 /* right padding */,
1 /* bottom padding */, 1 /* left padding */,
3 /* kernel height */, 3 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
192 /* groups */,
1 /* input channels per group */,
1 /* output_channels_per_group */,
192 /* input pixel stride */,
192 /* output pixel stride */,
w97.data(), w98.data(),
0.0f /* output min */, 6.0f /* output max */,
0 /* flags */,
&op18);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #18" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op18, xnn_delete_operator);
xnn_operator_t op19 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
0 /* top padding */, 0 /* right padding */,
0 /* bottom padding */, 0 /* left padding */,
1 /* kernel height */, 1 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
1 /* groups */,
192 /* input channels per group */,
32 /* output_channels_per_group */,
192 /* input pixel stride */,
32 /* output pixel stride */,
w99.data(), w100.data(),
-std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
0 /* flags */,
&op19);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #19" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op19, xnn_delete_operator);
xnn_operator_t op20 = nullptr;
status = xnn_create_add_nd_f32(
-std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
0 /* flags */,
&op20);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #20" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op20, xnn_delete_operator);
xnn_operator_t op21 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
0 /* top padding */, 0 /* right padding */,
0 /* bottom padding */, 0 /* left padding */,
1 /* kernel height */, 1 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
1 /* groups */,
32 /* input channels per group */,
192 /* output_channels_per_group */,
32 /* input pixel stride */,
192 /* output pixel stride */,
w101.data(), w102.data(),
0.0f /* output min */, 6.0f /* output max */,
0 /* flags */,
&op21);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #21" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op21, xnn_delete_operator);
xnn_operator_t op22 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
1 /* top padding */, 1 /* right padding */,
1 /* bottom padding */, 1 /* left padding */,
3 /* kernel height */, 3 /* kernel width */,
2 /* subsampling height */, 2 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
192 /* groups */,
1 /* input channels per group */,
1 /* output_channels_per_group */,
192 /* input pixel stride */,
192 /* output pixel stride */,
w103.data(), w104.data(),
0.0f /* output min */, 6.0f /* output max */,
0 /* flags */,
&op22);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #22" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op22, xnn_delete_operator);
xnn_operator_t op23 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
0 /* top padding */, 0 /* right padding */,
0 /* bottom padding */, 0 /* left padding */,
1 /* kernel height */, 1 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
1 /* groups */,
192 /* input channels per group */,
64 /* output_channels_per_group */,
192 /* input pixel stride */,
64 /* output pixel stride */,
w105.data(), w106.data(),
-std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
0 /* flags */,
&op23);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #23" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op23, xnn_delete_operator);
xnn_operator_t op24 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
0 /* top padding */, 0 /* right padding */,
0 /* bottom padding */, 0 /* left padding */,
1 /* kernel height */, 1 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
1 /* groups */,
64 /* input channels per group */,
384 /* output_channels_per_group */,
64 /* input pixel stride */,
384 /* output pixel stride */,
w107.data(), w108.data(),
0.0f /* output min */, 6.0f /* output max */,
0 /* flags */,
&op24);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #24" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op24, xnn_delete_operator);
xnn_operator_t op25 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
1 /* top padding */, 1 /* right padding */,
1 /* bottom padding */, 1 /* left padding */,
3 /* kernel height */, 3 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
384 /* groups */,
1 /* input channels per group */,
1 /* output_channels_per_group */,
384 /* input pixel stride */,
384 /* output pixel stride */,
w109.data(), w110.data(),
0.0f /* output min */, 6.0f /* output max */,
0 /* flags */,
&op25);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #25" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op25, xnn_delete_operator);
xnn_operator_t op26 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
0 /* top padding */, 0 /* right padding */,
0 /* bottom padding */, 0 /* left padding */,
1 /* kernel height */, 1 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
1 /* groups */,
384 /* input channels per group */,
64 /* output_channels_per_group */,
384 /* input pixel stride */,
64 /* output pixel stride */,
w111.data(), w112.data(),
-std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
0 /* flags */,
&op26);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #26" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op26, xnn_delete_operator);
xnn_operator_t op27 = nullptr;
status = xnn_create_add_nd_f32(
-std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
0 /* flags */,
&op27);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #27" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op27, xnn_delete_operator);
xnn_operator_t op28 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
0 /* top padding */, 0 /* right padding */,
0 /* bottom padding */, 0 /* left padding */,
1 /* kernel height */, 1 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
1 /* groups */,
64 /* input channels per group */,
384 /* output_channels_per_group */,
64 /* input pixel stride */,
384 /* output pixel stride */,
w113.data(), w114.data(),
0.0f /* output min */, 6.0f /* output max */,
0 /* flags */,
&op28);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #28" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op28, xnn_delete_operator);
xnn_operator_t op29 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
1 /* top padding */, 1 /* right padding */,
1 /* bottom padding */, 1 /* left padding */,
3 /* kernel height */, 3 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
384 /* groups */,
1 /* input channels per group */,
1 /* output_channels_per_group */,
384 /* input pixel stride */,
384 /* output pixel stride */,
w115.data(), w116.data(),
0.0f /* output min */, 6.0f /* output max */,
0 /* flags */,
&op29);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #29" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op29, xnn_delete_operator);
xnn_operator_t op30 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
0 /* top padding */, 0 /* right padding */,
0 /* bottom padding */, 0 /* left padding */,
1 /* kernel height */, 1 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
1 /* groups */,
384 /* input channels per group */,
64 /* output_channels_per_group */,
384 /* input pixel stride */,
64 /* output pixel stride */,
w117.data(), w118.data(),
-std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
0 /* flags */,
&op30);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #30" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op30, xnn_delete_operator);
xnn_operator_t op31 = nullptr;
status = xnn_create_add_nd_f32(
-std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
0 /* flags */,
&op31);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #31" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op31, xnn_delete_operator);
xnn_operator_t op32 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
0 /* top padding */, 0 /* right padding */,
0 /* bottom padding */, 0 /* left padding */,
1 /* kernel height */, 1 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
1 /* groups */,
64 /* input channels per group */,
384 /* output_channels_per_group */,
64 /* input pixel stride */,
384 /* output pixel stride */,
w119.data(), w120.data(),
0.0f /* output min */, 6.0f /* output max */,
0 /* flags */,
&op32);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #32" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op32, xnn_delete_operator);
xnn_operator_t op33 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
1 /* top padding */, 1 /* right padding */,
1 /* bottom padding */, 1 /* left padding */,
3 /* kernel height */, 3 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
384 /* groups */,
1 /* input channels per group */,
1 /* output_channels_per_group */,
384 /* input pixel stride */,
384 /* output pixel stride */,
w121.data(), w122.data(),
0.0f /* output min */, 6.0f /* output max */,
0 /* flags */,
&op33);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #33" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op33, xnn_delete_operator);
xnn_operator_t op34 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
0 /* top padding */, 0 /* right padding */,
0 /* bottom padding */, 0 /* left padding */,
1 /* kernel height */, 1 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
1 /* groups */,
384 /* input channels per group */,
64 /* output_channels_per_group */,
384 /* input pixel stride */,
64 /* output pixel stride */,
w123.data(), w124.data(),
-std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
0 /* flags */,
&op34);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #34" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op34, xnn_delete_operator);
xnn_operator_t op35 = nullptr;
status = xnn_create_add_nd_f32(
-std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
0 /* flags */,
&op35);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #35" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op35, xnn_delete_operator);
xnn_operator_t op36 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
0 /* top padding */, 0 /* right padding */,
0 /* bottom padding */, 0 /* left padding */,
1 /* kernel height */, 1 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
1 /* groups */,
64 /* input channels per group */,
384 /* output_channels_per_group */,
64 /* input pixel stride */,
384 /* output pixel stride */,
w125.data(), w126.data(),
0.0f /* output min */, 6.0f /* output max */,
0 /* flags */,
&op36);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #36" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op36, xnn_delete_operator);
xnn_operator_t op37 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
1 /* top padding */, 1 /* right padding */,
1 /* bottom padding */, 1 /* left padding */,
3 /* kernel height */, 3 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
384 /* groups */,
1 /* input channels per group */,
1 /* output_channels_per_group */,
384 /* input pixel stride */,
384 /* output pixel stride */,
w127.data(), w128.data(),
0.0f /* output min */, 6.0f /* output max */,
0 /* flags */,
&op37);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #37" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op37, xnn_delete_operator);
xnn_operator_t op38 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
0 /* top padding */, 0 /* right padding */,
0 /* bottom padding */, 0 /* left padding */,
1 /* kernel height */, 1 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
1 /* groups */,
384 /* input channels per group */,
96 /* output_channels_per_group */,
384 /* input pixel stride */,
96 /* output pixel stride */,
w129.data(), w130.data(),
-std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
0 /* flags */,
&op38);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #38" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op38, xnn_delete_operator);
xnn_operator_t op39 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
0 /* top padding */, 0 /* right padding */,
0 /* bottom padding */, 0 /* left padding */,
1 /* kernel height */, 1 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
1 /* groups */,
96 /* input channels per group */,
576 /* output_channels_per_group */,
96 /* input pixel stride */,
576 /* output pixel stride */,
w131.data(), w132.data(),
0.0f /* output min */, 6.0f /* output max */,
0 /* flags */,
&op39);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #39" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op39, xnn_delete_operator);
xnn_operator_t op40 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
1 /* top padding */, 1 /* right padding */,
1 /* bottom padding */, 1 /* left padding */,
3 /* kernel height */, 3 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
576 /* groups */,
1 /* input channels per group */,
1 /* output_channels_per_group */,
576 /* input pixel stride */,
576 /* output pixel stride */,
w133.data(), w134.data(),
0.0f /* output min */, 6.0f /* output max */,
0 /* flags */,
&op40);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #40" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op40, xnn_delete_operator);
xnn_operator_t op41 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
0 /* top padding */, 0 /* right padding */,
0 /* bottom padding */, 0 /* left padding */,
1 /* kernel height */, 1 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
1 /* groups */,
576 /* input channels per group */,
96 /* output_channels_per_group */,
576 /* input pixel stride */,
96 /* output pixel stride */,
w135.data(), w136.data(),
-std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
0 /* flags */,
&op41);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #41" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op41, xnn_delete_operator);
xnn_operator_t op42 = nullptr;
status = xnn_create_add_nd_f32(
-std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
0 /* flags */,
&op42);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #42" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op42, xnn_delete_operator);
xnn_operator_t op43 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
0 /* top padding */, 0 /* right padding */,
0 /* bottom padding */, 0 /* left padding */,
1 /* kernel height */, 1 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
1 /* groups */,
96 /* input channels per group */,
576 /* output_channels_per_group */,
96 /* input pixel stride */,
576 /* output pixel stride */,
w137.data(), w138.data(),
0.0f /* output min */, 6.0f /* output max */,
0 /* flags */,
&op43);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #43" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op43, xnn_delete_operator);
xnn_operator_t op44 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
1 /* top padding */, 1 /* right padding */,
1 /* bottom padding */, 1 /* left padding */,
3 /* kernel height */, 3 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
576 /* groups */,
1 /* input channels per group */,
1 /* output_channels_per_group */,
576 /* input pixel stride */,
576 /* output pixel stride */,
w139.data(), w140.data(),
0.0f /* output min */, 6.0f /* output max */,
0 /* flags */,
&op44);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #44" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op44, xnn_delete_operator);
xnn_operator_t op45 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
0 /* top padding */, 0 /* right padding */,
0 /* bottom padding */, 0 /* left padding */,
1 /* kernel height */, 1 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
1 /* groups */,
576 /* input channels per group */,
96 /* output_channels_per_group */,
576 /* input pixel stride */,
96 /* output pixel stride */,
w141.data(), w142.data(),
-std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
0 /* flags */,
&op45);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #45" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op45, xnn_delete_operator);
xnn_operator_t op46 = nullptr;
status = xnn_create_add_nd_f32(
-std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
0 /* flags */,
&op46);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #46" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op46, xnn_delete_operator);
xnn_operator_t op47 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
0 /* top padding */, 0 /* right padding */,
0 /* bottom padding */, 0 /* left padding */,
1 /* kernel height */, 1 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
1 /* groups */,
96 /* input channels per group */,
576 /* output_channels_per_group */,
96 /* input pixel stride */,
576 /* output pixel stride */,
w143.data(), w144.data(),
0.0f /* output min */, 6.0f /* output max */,
0 /* flags */,
&op47);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #47" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op47, xnn_delete_operator);
xnn_operator_t op48 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
1 /* top padding */, 1 /* right padding */,
1 /* bottom padding */, 1 /* left padding */,
3 /* kernel height */, 3 /* kernel width */,
2 /* subsampling height */, 2 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
576 /* groups */,
1 /* input channels per group */,
1 /* output_channels_per_group */,
576 /* input pixel stride */,
576 /* output pixel stride */,
w145.data(), w146.data(),
0.0f /* output min */, 6.0f /* output max */,
0 /* flags */,
&op48);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #48" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op48, xnn_delete_operator);
xnn_operator_t op49 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
0 /* top padding */, 0 /* right padding */,
0 /* bottom padding */, 0 /* left padding */,
1 /* kernel height */, 1 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
1 /* groups */,
576 /* input channels per group */,
160 /* output_channels_per_group */,
576 /* input pixel stride */,
160 /* output pixel stride */,
w147.data(), w148.data(),
-std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
0 /* flags */,
&op49);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #49" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op49, xnn_delete_operator);
xnn_operator_t op50 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
0 /* top padding */, 0 /* right padding */,
0 /* bottom padding */, 0 /* left padding */,
1 /* kernel height */, 1 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
1 /* groups */,
160 /* input channels per group */,
960 /* output_channels_per_group */,
160 /* input pixel stride */,
960 /* output pixel stride */,
w149.data(), w150.data(),
0.0f /* output min */, 6.0f /* output max */,
0 /* flags */,
&op50);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #50" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op50, xnn_delete_operator);
xnn_operator_t op51 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
1 /* top padding */, 1 /* right padding */,
1 /* bottom padding */, 1 /* left padding */,
3 /* kernel height */, 3 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
960 /* groups */,
1 /* input channels per group */,
1 /* output_channels_per_group */,
960 /* input pixel stride */,
960 /* output pixel stride */,
w151.data(), w152.data(),
0.0f /* output min */, 6.0f /* output max */,
0 /* flags */,
&op51);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #51" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op51, xnn_delete_operator);
xnn_operator_t op52 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
0 /* top padding */, 0 /* right padding */,
0 /* bottom padding */, 0 /* left padding */,
1 /* kernel height */, 1 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
1 /* groups */,
960 /* input channels per group */,
160 /* output_channels_per_group */,
960 /* input pixel stride */,
160 /* output pixel stride */,
w153.data(), w154.data(),
-std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
0 /* flags */,
&op52);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #52" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op52, xnn_delete_operator);
xnn_operator_t op53 = nullptr;
status = xnn_create_add_nd_f32(
-std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
0 /* flags */,
&op53);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #53" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op53, xnn_delete_operator);
xnn_operator_t op54 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
0 /* top padding */, 0 /* right padding */,
0 /* bottom padding */, 0 /* left padding */,
1 /* kernel height */, 1 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
1 /* groups */,
160 /* input channels per group */,
960 /* output_channels_per_group */,
160 /* input pixel stride */,
960 /* output pixel stride */,
w155.data(), w156.data(),
0.0f /* output min */, 6.0f /* output max */,
0 /* flags */,
&op54);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #54" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op54, xnn_delete_operator);
xnn_operator_t op55 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
1 /* top padding */, 1 /* right padding */,
1 /* bottom padding */, 1 /* left padding */,
3 /* kernel height */, 3 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
960 /* groups */,
1 /* input channels per group */,
1 /* output_channels_per_group */,
960 /* input pixel stride */,
960 /* output pixel stride */,
w157.data(), w158.data(),
0.0f /* output min */, 6.0f /* output max */,
0 /* flags */,
&op55);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #55" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op55, xnn_delete_operator);
xnn_operator_t op56 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
0 /* top padding */, 0 /* right padding */,
0 /* bottom padding */, 0 /* left padding */,
1 /* kernel height */, 1 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
1 /* groups */,
960 /* input channels per group */,
160 /* output_channels_per_group */,
960 /* input pixel stride */,
160 /* output pixel stride */,
w159.data(), w160.data(),
-std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
0 /* flags */,
&op56);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #56" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op56, xnn_delete_operator);
xnn_operator_t op57 = nullptr;
status = xnn_create_add_nd_f32(
-std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
0 /* flags */,
&op57);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #57" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op57, xnn_delete_operator);
xnn_operator_t op58 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
0 /* top padding */, 0 /* right padding */,
0 /* bottom padding */, 0 /* left padding */,
1 /* kernel height */, 1 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
1 /* groups */,
160 /* input channels per group */,
960 /* output_channels_per_group */,
160 /* input pixel stride */,
960 /* output pixel stride */,
w161.data(), w162.data(),
0.0f /* output min */, 6.0f /* output max */,
0 /* flags */,
&op58);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #58" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op58, xnn_delete_operator);
xnn_operator_t op59 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
1 /* top padding */, 1 /* right padding */,
1 /* bottom padding */, 1 /* left padding */,
3 /* kernel height */, 3 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
960 /* groups */,
1 /* input channels per group */,
1 /* output_channels_per_group */,
960 /* input pixel stride */,
960 /* output pixel stride */,
w163.data(), w164.data(),
0.0f /* output min */, 6.0f /* output max */,
0 /* flags */,
&op59);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #59" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op59, xnn_delete_operator);
xnn_operator_t op60 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
0 /* top padding */, 0 /* right padding */,
0 /* bottom padding */, 0 /* left padding */,
1 /* kernel height */, 1 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
1 /* groups */,
960 /* input channels per group */,
320 /* output_channels_per_group */,
960 /* input pixel stride */,
320 /* output pixel stride */,
w165.data(), w166.data(),
-std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
0 /* flags */,
&op60);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #60" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op60, xnn_delete_operator);
xnn_operator_t op61 = nullptr;
status = xnn_create_convolution2d_nchw_f32(
0 /* top padding */, 0 /* right padding */,
0 /* bottom padding */, 0 /* left padding */,
1 /* kernel height */, 1 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
1 /* groups */,
320 /* input channels per group */,
1280 /* output_channels_per_group */,
320 /* input pixel stride */,
1280 /* output pixel stride */,
w167.data(), w168.data(),
0.0f /* output min */, 6.0f /* output max */,
0 /* flags */,
&op61);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #61" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op61, xnn_delete_operator);
xnn_operator_t op62 = nullptr;
status = xnn_create_global_average_pooling_ncw_f32(
1280 /* channels */,
-std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(),
0 /* flags */,
&op62);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #62" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op62, xnn_delete_operator);
xnn_operator_t op63 = nullptr;
status = xnn_create_convolution2d_nhwc_f32(
0 /* top padding */, 0 /* right padding */,
0 /* bottom padding */, 0 /* left padding */,
1 /* kernel height */, 1 /* kernel width */,
1 /* subsampling height */, 1 /* subsampling width */,
1 /* dilation_height */, 1 /* dilation_width */,
1 /* groups */,
1280 /* input channels per group */,
1001 /* output_channels_per_group */,
1280 /* input pixel stride */,
1001 /* output pixel stride */,
w169.data(), w170.data(),
-std::numeric_limits<float>::infinity() /* output min */, std::numeric_limits<float>::infinity() /* output max */,
0 /* flags */,
&op63);
if (status != xnn_status_success) {
std::cerr << "failed to create operation #63" << std::endl;
return ExecutionPlan();
}
operators.emplace_back(op63, xnn_delete_operator);
status = xnn_setup_convolution2d_nchw_f32(
op0,
1 /* batch size */, 224 /* input height */, 224 /* input width */,
v0.data() /* input */, v1.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #0" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op1,
1 /* batch size */, 112 /* input height */, 112 /* input width */,
v1.data() /* input */, v2.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #1" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op2,
1 /* batch size */, 112 /* input height */, 112 /* input width */,
v2.data() /* input */, v3.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #2" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op3,
1 /* batch size */, 112 /* input height */, 112 /* input width */,
v3.data() /* input */, v4.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #3" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op4,
1 /* batch size */, 112 /* input height */, 112 /* input width */,
v4.data() /* input */, v5.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #4" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op5,
1 /* batch size */, 56 /* input height */, 56 /* input width */,
v5.data() /* input */, v6.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #5" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op6,
1 /* batch size */, 56 /* input height */, 56 /* input width */,
v6.data() /* input */, v7.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #6" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op7,
1 /* batch size */, 56 /* input height */, 56 /* input width */,
v7.data() /* input */, v8.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #7" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op8,
1 /* batch size */, 56 /* input height */, 56 /* input width */,
v8.data() /* input */, v9.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #8" << std::endl;
return ExecutionPlan();
}
{
const size_t a_shape[] = { 1, 24, 56, 56 };
const size_t b_shape[] = { 1, 24, 56, 56 };
status = xnn_setup_add_nd_f32(
op9,
4, a_shape, 4, b_shape,
v9.data() /* a */, v6.data() /* b */, v10.data() /* output */,
threadpool /* threadpool */);
}
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #9" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op10,
1 /* batch size */, 56 /* input height */, 56 /* input width */,
v10.data() /* input */, v11.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #10" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op11,
1 /* batch size */, 56 /* input height */, 56 /* input width */,
v11.data() /* input */, v12.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #11" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op12,
1 /* batch size */, 28 /* input height */, 28 /* input width */,
v12.data() /* input */, v13.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #12" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op13,
1 /* batch size */, 28 /* input height */, 28 /* input width */,
v13.data() /* input */, v14.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #13" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op14,
1 /* batch size */, 28 /* input height */, 28 /* input width */,
v14.data() /* input */, v15.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #14" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op15,
1 /* batch size */, 28 /* input height */, 28 /* input width */,
v15.data() /* input */, v16.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #15" << std::endl;
return ExecutionPlan();
}
{
const size_t a_shape[] = { 1, 32, 28, 28 };
const size_t b_shape[] = { 1, 32, 28, 28 };
status = xnn_setup_add_nd_f32(
op16,
4, a_shape, 4, b_shape,
v16.data() /* a */, v13.data() /* b */, v17.data() /* output */,
threadpool /* threadpool */);
}
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #16" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op17,
1 /* batch size */, 28 /* input height */, 28 /* input width */,
v17.data() /* input */, v18.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #17" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op18,
1 /* batch size */, 28 /* input height */, 28 /* input width */,
v18.data() /* input */, v19.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #18" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op19,
1 /* batch size */, 28 /* input height */, 28 /* input width */,
v19.data() /* input */, v20.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #19" << std::endl;
return ExecutionPlan();
}
{
const size_t a_shape[] = { 1, 32, 28, 28 };
const size_t b_shape[] = { 1, 32, 28, 28 };
status = xnn_setup_add_nd_f32(
op20,
4, a_shape, 4, b_shape,
v20.data() /* a */, v17.data() /* b */, v21.data() /* output */,
threadpool /* threadpool */);
}
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #20" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op21,
1 /* batch size */, 28 /* input height */, 28 /* input width */,
v21.data() /* input */, v22.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #21" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op22,
1 /* batch size */, 28 /* input height */, 28 /* input width */,
v22.data() /* input */, v23.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #22" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op23,
1 /* batch size */, 14 /* input height */, 14 /* input width */,
v23.data() /* input */, v24.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #23" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op24,
1 /* batch size */, 14 /* input height */, 14 /* input width */,
v24.data() /* input */, v25.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #24" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op25,
1 /* batch size */, 14 /* input height */, 14 /* input width */,
v25.data() /* input */, v26.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #25" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op26,
1 /* batch size */, 14 /* input height */, 14 /* input width */,
v26.data() /* input */, v27.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #26" << std::endl;
return ExecutionPlan();
}
{
const size_t a_shape[] = { 1, 64, 14, 14 };
const size_t b_shape[] = { 1, 64, 14, 14 };
status = xnn_setup_add_nd_f32(
op27,
4, a_shape, 4, b_shape,
v27.data() /* a */, v24.data() /* b */, v28.data() /* output */,
threadpool /* threadpool */);
}
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #27" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op28,
1 /* batch size */, 14 /* input height */, 14 /* input width */,
v28.data() /* input */, v29.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #28" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op29,
1 /* batch size */, 14 /* input height */, 14 /* input width */,
v29.data() /* input */, v30.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #29" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op30,
1 /* batch size */, 14 /* input height */, 14 /* input width */,
v30.data() /* input */, v31.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #30" << std::endl;
return ExecutionPlan();
}
{
const size_t a_shape[] = { 1, 64, 14, 14 };
const size_t b_shape[] = { 1, 64, 14, 14 };
status = xnn_setup_add_nd_f32(
op31,
4, a_shape, 4, b_shape,
v31.data() /* a */, v28.data() /* b */, v32.data() /* output */,
threadpool /* threadpool */);
}
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #31" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op32,
1 /* batch size */, 14 /* input height */, 14 /* input width */,
v32.data() /* input */, v33.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #32" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op33,
1 /* batch size */, 14 /* input height */, 14 /* input width */,
v33.data() /* input */, v34.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #33" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op34,
1 /* batch size */, 14 /* input height */, 14 /* input width */,
v34.data() /* input */, v35.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #34" << std::endl;
return ExecutionPlan();
}
{
const size_t a_shape[] = { 1, 64, 14, 14 };
const size_t b_shape[] = { 1, 64, 14, 14 };
status = xnn_setup_add_nd_f32(
op35,
4, a_shape, 4, b_shape,
v35.data() /* a */, v32.data() /* b */, v36.data() /* output */,
threadpool /* threadpool */);
}
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #35" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op36,
1 /* batch size */, 14 /* input height */, 14 /* input width */,
v36.data() /* input */, v37.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #36" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op37,
1 /* batch size */, 14 /* input height */, 14 /* input width */,
v37.data() /* input */, v38.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #37" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op38,
1 /* batch size */, 14 /* input height */, 14 /* input width */,
v38.data() /* input */, v39.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #38" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op39,
1 /* batch size */, 14 /* input height */, 14 /* input width */,
v39.data() /* input */, v40.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #39" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op40,
1 /* batch size */, 14 /* input height */, 14 /* input width */,
v40.data() /* input */, v41.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #40" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op41,
1 /* batch size */, 14 /* input height */, 14 /* input width */,
v41.data() /* input */, v42.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #41" << std::endl;
return ExecutionPlan();
}
{
const size_t a_shape[] = { 1, 96, 14, 14 };
const size_t b_shape[] = { 1, 96, 14, 14 };
status = xnn_setup_add_nd_f32(
op42,
4, a_shape, 4, b_shape,
v42.data() /* a */, v39.data() /* b */, v43.data() /* output */,
threadpool /* threadpool */);
}
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #42" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op43,
1 /* batch size */, 14 /* input height */, 14 /* input width */,
v43.data() /* input */, v44.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #43" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op44,
1 /* batch size */, 14 /* input height */, 14 /* input width */,
v44.data() /* input */, v45.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #44" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op45,
1 /* batch size */, 14 /* input height */, 14 /* input width */,
v45.data() /* input */, v46.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #45" << std::endl;
return ExecutionPlan();
}
{
const size_t a_shape[] = { 1, 96, 14, 14 };
const size_t b_shape[] = { 1, 96, 14, 14 };
status = xnn_setup_add_nd_f32(
op46,
4, a_shape, 4, b_shape,
v46.data() /* a */, v43.data() /* b */, v47.data() /* output */,
threadpool /* threadpool */);
}
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #46" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op47,
1 /* batch size */, 14 /* input height */, 14 /* input width */,
v47.data() /* input */, v48.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #47" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op48,
1 /* batch size */, 14 /* input height */, 14 /* input width */,
v48.data() /* input */, v49.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #48" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op49,
1 /* batch size */, 7 /* input height */, 7 /* input width */,
v49.data() /* input */, v50.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #49" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op50,
1 /* batch size */, 7 /* input height */, 7 /* input width */,
v50.data() /* input */, v51.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #50" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op51,
1 /* batch size */, 7 /* input height */, 7 /* input width */,
v51.data() /* input */, v52.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #51" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op52,
1 /* batch size */, 7 /* input height */, 7 /* input width */,
v52.data() /* input */, v53.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #52" << std::endl;
return ExecutionPlan();
}
{
const size_t a_shape[] = { 1, 160, 7, 7 };
const size_t b_shape[] = { 1, 160, 7, 7 };
status = xnn_setup_add_nd_f32(
op53,
4, a_shape, 4, b_shape,
v53.data() /* a */, v50.data() /* b */, v54.data() /* output */,
threadpool /* threadpool */);
}
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #53" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op54,
1 /* batch size */, 7 /* input height */, 7 /* input width */,
v54.data() /* input */, v55.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #54" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op55,
1 /* batch size */, 7 /* input height */, 7 /* input width */,
v55.data() /* input */, v56.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #55" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op56,
1 /* batch size */, 7 /* input height */, 7 /* input width */,
v56.data() /* input */, v57.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #56" << std::endl;
return ExecutionPlan();
}
{
const size_t a_shape[] = { 1, 160, 7, 7 };
const size_t b_shape[] = { 1, 160, 7, 7 };
status = xnn_setup_add_nd_f32(
op57,
4, a_shape, 4, b_shape,
v57.data() /* a */, v54.data() /* b */, v58.data() /* output */,
threadpool /* threadpool */);
}
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #57" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op58,
1 /* batch size */, 7 /* input height */, 7 /* input width */,
v58.data() /* input */, v59.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #58" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op59,
1 /* batch size */, 7 /* input height */, 7 /* input width */,
v59.data() /* input */, v60.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #59" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op60,
1 /* batch size */, 7 /* input height */, 7 /* input width */,
v60.data() /* input */, v61.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #60" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nchw_f32(
op61,
1 /* batch size */, 7 /* input height */, 7 /* input width */,
v61.data() /* input */, v62.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #61" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_global_average_pooling_ncw_f32(
op62,
1 /* batch size */, 49 /* width */,
v62.data() /* input */, v63.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #62" << std::endl;
return ExecutionPlan();
}
status = xnn_setup_convolution2d_nhwc_f32(
op63,
1 /* batch size */, 1 /* input height */, 1 /* input width */,
v63.data() /* input */, v64.data() /* output */,
threadpool /* threadpool */);
if (status != xnn_status_success) {
std::cerr << "failed to setup operation #63" << std::endl;
return ExecutionPlan();
}
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wpessimizing-move"
return operators;
#pragma clang diagnostic pop
}
} // namespace models