You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
742 lines
30 KiB
742 lines
30 KiB
// Copyright 2019 Google LLC
|
|
//
|
|
// This source code is licensed under the BSD-style license found in the
|
|
// LICENSE file in the root directory of this source tree.
|
|
|
|
#pragma once
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <cmath>
|
|
#include <cstddef>
|
|
#include <cstdlib>
|
|
#include <functional>
|
|
#include <initializer_list>
|
|
#include <limits>
|
|
#include <numeric>
|
|
#include <random>
|
|
#include <vector>
|
|
|
|
#include <fp16.h>
|
|
|
|
#include <xnnpack.h>
|
|
|
|
|
|
class BinaryElementwiseOperatorTester {
|
|
public:
|
|
enum class OperationType {
|
|
Unknown,
|
|
Add,
|
|
Divide,
|
|
Maximum,
|
|
Minimum,
|
|
Multiply,
|
|
Subtract,
|
|
SquaredDifference,
|
|
};
|
|
|
|
inline BinaryElementwiseOperatorTester& input1_shape(std::initializer_list<size_t> input1_shape) {
|
|
assert(input1_shape.size() <= XNN_MAX_TENSOR_DIMS);
|
|
this->input1_shape_ = std::vector<size_t>(input1_shape);
|
|
return *this;
|
|
}
|
|
|
|
inline const std::vector<size_t>& input1_shape() const {
|
|
return this->input1_shape_;
|
|
}
|
|
|
|
inline size_t input1_dim(size_t i) const {
|
|
return i < num_input1_dims() ? this->input1_shape_[i] : 1;
|
|
}
|
|
|
|
inline size_t num_input1_dims() const {
|
|
return this->input1_shape_.size();
|
|
}
|
|
|
|
inline size_t num_input1_elements() const {
|
|
return std::accumulate(
|
|
this->input1_shape_.begin(), this->input1_shape_.end(), size_t(1), std::multiplies<size_t>());
|
|
}
|
|
|
|
inline BinaryElementwiseOperatorTester& input1_zero_point(int16_t input1_zero_point) {
|
|
this->input1_zero_point_ = input1_zero_point;
|
|
return *this;
|
|
}
|
|
|
|
inline int16_t input1_zero_point() const {
|
|
return this->input1_zero_point_;
|
|
}
|
|
|
|
inline BinaryElementwiseOperatorTester& input1_scale(float input1_scale) {
|
|
assert(std::isfinite(input1_scale));
|
|
this->input1_scale_ = input1_scale;
|
|
return *this;
|
|
}
|
|
|
|
inline float input1_scale() const {
|
|
return this->input1_scale_;
|
|
}
|
|
|
|
inline BinaryElementwiseOperatorTester& input2_shape(std::initializer_list<size_t> input2_shape) {
|
|
assert(input2_shape.size() <= XNN_MAX_TENSOR_DIMS);
|
|
this->input2_shape_ = std::vector<size_t>(input2_shape);
|
|
return *this;
|
|
}
|
|
|
|
inline const std::vector<size_t>& input2_shape() const {
|
|
return this->input2_shape_;
|
|
}
|
|
|
|
inline size_t input2_dim(size_t i) const {
|
|
return i < num_input2_dims() ? this->input2_shape_[i] : 1;
|
|
}
|
|
|
|
inline size_t num_input2_dims() const {
|
|
return this->input2_shape_.size();
|
|
}
|
|
|
|
inline size_t num_input2_elements() const {
|
|
return std::accumulate(
|
|
this->input2_shape_.begin(), this->input2_shape_.end(), size_t(1), std::multiplies<size_t>());
|
|
}
|
|
|
|
inline BinaryElementwiseOperatorTester& input2_zero_point(int16_t input2_zero_point) {
|
|
this->input2_zero_point_ = input2_zero_point;
|
|
return *this;
|
|
}
|
|
|
|
inline int16_t input2_zero_point() const {
|
|
return this->input2_zero_point_;
|
|
}
|
|
|
|
inline BinaryElementwiseOperatorTester& input2_scale(float input2_scale) {
|
|
assert(std::isfinite(input2_scale));
|
|
this->input2_scale_ = input2_scale;
|
|
return *this;
|
|
}
|
|
|
|
inline float input2_scale() const {
|
|
return this->input2_scale_;
|
|
}
|
|
|
|
inline BinaryElementwiseOperatorTester& output_zero_point(int16_t output_zero_point) {
|
|
this->output_zero_point_ = output_zero_point;
|
|
return *this;
|
|
}
|
|
|
|
inline int16_t output_zero_point() const {
|
|
return this->output_zero_point_;
|
|
}
|
|
|
|
inline BinaryElementwiseOperatorTester& output_scale(float output_scale) {
|
|
assert(std::isfinite(output_scale));
|
|
this->output_scale_ = output_scale;
|
|
return *this;
|
|
}
|
|
|
|
inline float output_scale() const {
|
|
return this->output_scale_;
|
|
}
|
|
|
|
inline BinaryElementwiseOperatorTester& qmin(uint8_t qmin) {
|
|
this->qmin_ = qmin;
|
|
return *this;
|
|
}
|
|
|
|
inline uint8_t qmin() const {
|
|
return this->qmin_;
|
|
}
|
|
|
|
inline BinaryElementwiseOperatorTester& qmax(uint8_t qmax) {
|
|
this->qmax_ = qmax;
|
|
return *this;
|
|
}
|
|
|
|
inline uint8_t qmax() const {
|
|
return this->qmax_;
|
|
}
|
|
|
|
inline BinaryElementwiseOperatorTester& operation_type(OperationType operation_type) {
|
|
this->operation_type_ = operation_type;
|
|
return *this;
|
|
}
|
|
|
|
inline OperationType operation_type() const {
|
|
return this->operation_type_;
|
|
}
|
|
|
|
inline BinaryElementwiseOperatorTester& iterations(size_t iterations) {
|
|
this->iterations_ = iterations;
|
|
return *this;
|
|
}
|
|
|
|
inline size_t iterations() const {
|
|
return this->iterations_;
|
|
}
|
|
|
|
float Compute(float a, float b) const {
|
|
switch (operation_type()) {
|
|
case OperationType::Add:
|
|
return a + b;
|
|
case OperationType::Divide:
|
|
return a / b;
|
|
case OperationType::Maximum:
|
|
return std::max<float>(a, b);
|
|
case OperationType::Minimum:
|
|
return std::min<float>(a, b);
|
|
case OperationType::Multiply:
|
|
return a * b;
|
|
case OperationType::Subtract:
|
|
return a - b;
|
|
case OperationType::SquaredDifference:
|
|
return (a - b) * (a - b);
|
|
default:
|
|
return std::nanf("");
|
|
}
|
|
}
|
|
|
|
void TestQS8() const {
|
|
ASSERT_NE(operation_type(), OperationType::Unknown);
|
|
ASSERT_GE(input1_zero_point(), std::numeric_limits<int8_t>::min());
|
|
ASSERT_LE(input1_zero_point(), std::numeric_limits<int8_t>::max());
|
|
ASSERT_GE(input2_zero_point(), std::numeric_limits<int8_t>::min());
|
|
ASSERT_LE(input2_zero_point(), std::numeric_limits<int8_t>::max());
|
|
ASSERT_GE(output_zero_point(), std::numeric_limits<int8_t>::min());
|
|
ASSERT_LE(output_zero_point(), std::numeric_limits<int8_t>::max());
|
|
|
|
std::random_device random_device;
|
|
auto rng = std::mt19937(random_device());
|
|
auto i8rng = std::bind(
|
|
std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()), std::ref(rng));
|
|
|
|
// Compute generalized shapes.
|
|
std::array<size_t, XNN_MAX_TENSOR_DIMS> input1_dims;
|
|
std::array<size_t, XNN_MAX_TENSOR_DIMS> input2_dims;
|
|
std::array<size_t, XNN_MAX_TENSOR_DIMS> output_dims;
|
|
std::fill(input1_dims.begin(), input1_dims.end(), 1);
|
|
std::fill(input2_dims.begin(), input2_dims.end(), 1);
|
|
std::fill(output_dims.begin(), output_dims.end(), 1);
|
|
std::copy(input1_shape().cbegin(), input1_shape().cend(), input1_dims.end() - num_input1_dims());
|
|
std::copy(input2_shape().cbegin(), input2_shape().cend(), input2_dims.end() - num_input2_dims());
|
|
for (size_t i = 0; i < XNN_MAX_TENSOR_DIMS; i++) {
|
|
if (input1_dims[i] != 1 && input2_dims[i] != 1) {
|
|
ASSERT_EQ(input1_dims[i], input2_dims[i]);
|
|
}
|
|
output_dims[i] = std::max(input1_dims[i], input2_dims[i]);
|
|
}
|
|
const size_t num_output_elements =
|
|
std::accumulate(output_dims.begin(), output_dims.end(), size_t(1), std::multiplies<size_t>());
|
|
|
|
// Compute generalized strides.
|
|
std::array<size_t, XNN_MAX_TENSOR_DIMS> input1_strides;
|
|
std::array<size_t, XNN_MAX_TENSOR_DIMS> input2_strides;
|
|
std::array<size_t, XNN_MAX_TENSOR_DIMS> output_strides;
|
|
size_t input1_stride = 1, input2_stride = 1, output_stride = 1;
|
|
for (size_t i = XNN_MAX_TENSOR_DIMS; i != 0; i--) {
|
|
input1_strides[i - 1] = input1_dims[i - 1] == 1 ? 0 : input1_stride;
|
|
input2_strides[i - 1] = input2_dims[i - 1] == 1 ? 0 : input2_stride;
|
|
output_strides[i - 1] = output_stride;
|
|
input1_stride *= input1_dims[i - 1];
|
|
input2_stride *= input2_dims[i - 1];
|
|
output_stride *= output_dims[i - 1];
|
|
}
|
|
|
|
std::vector<int8_t> input1(XNN_EXTRA_BYTES / sizeof(uint16_t) + num_input1_elements());
|
|
std::vector<int8_t> input2(XNN_EXTRA_BYTES / sizeof(uint16_t) + num_input2_elements());
|
|
std::vector<int8_t> output(num_output_elements);
|
|
std::vector<float> output_ref(num_output_elements);
|
|
for (size_t iteration = 0; iteration < iterations(); iteration++) {
|
|
std::generate(input1.begin(), input1.end(), std::ref(i8rng));
|
|
std::generate(input2.begin(), input2.end(), std::ref(i8rng));
|
|
std::fill(output.begin(), output.end(), 0xAA);
|
|
|
|
// Compute reference results.
|
|
for (size_t i = 0; i < output_dims[0]; i++) {
|
|
for (size_t j = 0; j < output_dims[1]; j++) {
|
|
for (size_t k = 0; k < output_dims[2]; k++) {
|
|
for (size_t l = 0; l < output_dims[3]; l++) {
|
|
for (size_t m = 0; m < output_dims[4]; m++) {
|
|
for (size_t n = 0; n < output_dims[5]; n++) {
|
|
output_ref[i * output_strides[0] + j * output_strides[1] + k * output_strides[2] + l * output_strides[3] + m * output_strides[4] + n * output_strides[5]] = Compute(
|
|
input1_scale() * (int32_t(input1[i * input1_strides[0] + j * input1_strides[1] + k * input1_strides[2] + l * input1_strides[3] + m * input1_strides[4] + n * input1_strides[5]]) - input1_zero_point()),
|
|
input2_scale() * (int32_t(input2[i * input2_strides[0] + j * input2_strides[1] + k * input2_strides[2] + l * input2_strides[3] + m * input2_strides[4] + n * input2_strides[5]]) - input2_zero_point())) /
|
|
output_scale() + float(output_zero_point());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (float& output_value : output_ref) {
|
|
output_value = std::min(std::max(output_value, float(int8_t(qmin() - 0x80))), float(int8_t(qmax() - 0x80)));
|
|
}
|
|
|
|
// Create, setup, run, and destroy a binary elementwise operator.
|
|
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
|
|
xnn_operator_t binary_elementwise_op = nullptr;
|
|
xnn_status status = xnn_status_unsupported_parameter;
|
|
switch (operation_type()) {
|
|
case OperationType::Add:
|
|
status = xnn_create_add_nd_qs8(
|
|
input1_zero_point(), input1_scale(),
|
|
input2_zero_point(), input2_scale(),
|
|
output_zero_point(), output_scale(),
|
|
int8_t(qmin() - 0x80), int8_t(qmax() - 0x80),
|
|
0, &binary_elementwise_op);
|
|
break;
|
|
default:
|
|
FAIL() << "Unsupported operation type";
|
|
}
|
|
if (status == xnn_status_unsupported_hardware) {
|
|
GTEST_SKIP();
|
|
}
|
|
ASSERT_EQ(xnn_status_success, status);
|
|
ASSERT_NE(nullptr, binary_elementwise_op);
|
|
|
|
// Smart pointer to automatically delete binary_elementwise_op.
|
|
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_binary_elementwise_op(binary_elementwise_op, xnn_delete_operator);
|
|
|
|
switch (operation_type()) {
|
|
case OperationType::Add:
|
|
ASSERT_EQ(xnn_status_success,
|
|
xnn_setup_add_nd_qs8(
|
|
binary_elementwise_op,
|
|
num_input1_dims(),
|
|
input1_shape().data(),
|
|
num_input2_dims(),
|
|
input2_shape().data(),
|
|
input1.data(), input2.data(), output.data(),
|
|
nullptr /* thread pool */));
|
|
break;
|
|
default:
|
|
FAIL() << "Unsupported operation type";
|
|
}
|
|
|
|
ASSERT_EQ(xnn_status_success,
|
|
xnn_run_operator(binary_elementwise_op, nullptr /* thread pool */));
|
|
|
|
// Verify results.
|
|
for (size_t i = 0; i < output_dims[0]; i++) {
|
|
for (size_t j = 0; j < output_dims[1]; j++) {
|
|
for (size_t k = 0; k < output_dims[2]; k++) {
|
|
for (size_t l = 0; l < output_dims[3]; l++) {
|
|
for (size_t m = 0; m < output_dims[4]; m++) {
|
|
for (size_t n = 0; n < output_dims[5]; n++) {
|
|
const size_t index =
|
|
i * output_strides[0] + j * output_strides[1] + k * output_strides[2] + l * output_strides[3] + m * output_strides[4] + n * output_strides[5];
|
|
ASSERT_NEAR(float(output[index]), output_ref[index], 0.6f)
|
|
<< "(i, j, k, l, m, n) = (" << i << ", " << j << ", " << k << ", " << l << ", " << m << ", " << n << ")"
|
|
<< ", input1 zero point = " << input1_zero_point() << ", input1 scale = " << input1_scale()
|
|
<< ", input2 zero point = " << input2_zero_point() << ", input2 scale = " << input2_scale()
|
|
<< ", output zero point = " << output_zero_point() << ", output scale = " << output_scale();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void TestF16() const {
|
|
ASSERT_NE(operation_type(), OperationType::Unknown);
|
|
|
|
std::random_device random_device;
|
|
auto rng = std::mt19937(random_device());
|
|
auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), rng);
|
|
auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);
|
|
|
|
// Compute generalized shapes.
|
|
std::array<size_t, XNN_MAX_TENSOR_DIMS> input1_dims;
|
|
std::array<size_t, XNN_MAX_TENSOR_DIMS> input2_dims;
|
|
std::array<size_t, XNN_MAX_TENSOR_DIMS> output_dims;
|
|
std::fill(input1_dims.begin(), input1_dims.end(), 1);
|
|
std::fill(input2_dims.begin(), input2_dims.end(), 1);
|
|
std::fill(output_dims.begin(), output_dims.end(), 1);
|
|
std::copy(input1_shape().cbegin(), input1_shape().cend(), input1_dims.end() - num_input1_dims());
|
|
std::copy(input2_shape().cbegin(), input2_shape().cend(), input2_dims.end() - num_input2_dims());
|
|
for (size_t i = 0; i < XNN_MAX_TENSOR_DIMS; i++) {
|
|
if (input1_dims[i] != 1 && input2_dims[i] != 1) {
|
|
ASSERT_EQ(input1_dims[i], input2_dims[i]);
|
|
}
|
|
output_dims[i] = std::max(input1_dims[i], input2_dims[i]);
|
|
}
|
|
const size_t num_output_elements =
|
|
std::accumulate(output_dims.begin(), output_dims.end(), size_t(1), std::multiplies<size_t>());
|
|
|
|
// Compute generalized strides.
|
|
std::array<size_t, XNN_MAX_TENSOR_DIMS> input1_strides;
|
|
std::array<size_t, XNN_MAX_TENSOR_DIMS> input2_strides;
|
|
std::array<size_t, XNN_MAX_TENSOR_DIMS> output_strides;
|
|
size_t input1_stride = 1, input2_stride = 1, output_stride = 1;
|
|
for (size_t i = XNN_MAX_TENSOR_DIMS; i != 0; i--) {
|
|
input1_strides[i - 1] = input1_dims[i - 1] == 1 ? 0 : input1_stride;
|
|
input2_strides[i - 1] = input2_dims[i - 1] == 1 ? 0 : input2_stride;
|
|
output_strides[i - 1] = output_stride;
|
|
input1_stride *= input1_dims[i - 1];
|
|
input2_stride *= input2_dims[i - 1];
|
|
output_stride *= output_dims[i - 1];
|
|
}
|
|
|
|
std::vector<uint16_t> input1(XNN_EXTRA_BYTES / sizeof(uint16_t) + num_input1_elements());
|
|
std::vector<uint16_t> input2(XNN_EXTRA_BYTES / sizeof(uint16_t) + num_input2_elements());
|
|
std::vector<uint16_t> output(num_output_elements);
|
|
std::vector<float> output_ref(num_output_elements);
|
|
for (size_t iteration = 0; iteration < iterations(); iteration++) {
|
|
std::generate(input1.begin(), input1.end(), std::ref(f16rng));
|
|
std::generate(input2.begin(), input2.end(), std::ref(f16rng));
|
|
std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */);
|
|
|
|
// Compute reference results.
|
|
for (size_t i = 0; i < output_dims[0]; i++) {
|
|
for (size_t j = 0; j < output_dims[1]; j++) {
|
|
for (size_t k = 0; k < output_dims[2]; k++) {
|
|
for (size_t l = 0; l < output_dims[3]; l++) {
|
|
for (size_t m = 0; m < output_dims[4]; m++) {
|
|
for (size_t n = 0; n < output_dims[5]; n++) {
|
|
output_ref[i * output_strides[0] + j * output_strides[1] + k * output_strides[2] + l * output_strides[3] + m * output_strides[4] + n * output_strides[5]] = Compute(
|
|
fp16_ieee_to_fp32_value(input1[i * input1_strides[0] + j * input1_strides[1] + k * input1_strides[2] + l * input1_strides[3] + m * input1_strides[4] + n * input1_strides[5]]),
|
|
fp16_ieee_to_fp32_value(input2[i * input2_strides[0] + j * input2_strides[1] + k * input2_strides[2] + l * input2_strides[3] + m * input2_strides[4] + n * input2_strides[5]]));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compute clamping parameters.
|
|
const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
|
|
const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
|
|
const float accumulated_range = accumulated_max - accumulated_min;
|
|
const float scaled_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_min + accumulated_range / 255.0f * float(qmin())));
|
|
const float scaled_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_max - accumulated_range / 255.0f * float(255 - qmax())));
|
|
const float output_min = scaled_min == scaled_max ? -std::numeric_limits<float>::infinity() : scaled_min;
|
|
const float output_max = scaled_min == scaled_max ? +std::numeric_limits<float>::infinity() : scaled_max;
|
|
|
|
for (float& output_value : output_ref) {
|
|
output_value = std::min(std::max(output_value, output_min), output_max);
|
|
}
|
|
|
|
// Create, setup, run, and destroy a binary elementwise operator.
|
|
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
|
|
xnn_operator_t binary_elementwise_op = nullptr;
|
|
xnn_status status = xnn_status_unsupported_parameter;
|
|
switch (operation_type()) {
|
|
case OperationType::Add:
|
|
status = xnn_create_add_nd_f16(output_min, output_max, 0, &binary_elementwise_op);
|
|
break;
|
|
case OperationType::Multiply:
|
|
status = xnn_create_multiply_nd_f16(output_min, output_max, 0, &binary_elementwise_op);
|
|
break;
|
|
default:
|
|
FAIL() << "Unsupported operation type";
|
|
}
|
|
if (status == xnn_status_unsupported_hardware) {
|
|
GTEST_SKIP();
|
|
}
|
|
ASSERT_EQ(xnn_status_success, status);
|
|
ASSERT_NE(nullptr, binary_elementwise_op);
|
|
|
|
// Smart pointer to automatically delete binary_elementwise_op.
|
|
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_binary_elementwise_op(binary_elementwise_op, xnn_delete_operator);
|
|
|
|
switch (operation_type()) {
|
|
case OperationType::Add:
|
|
ASSERT_EQ(xnn_status_success,
|
|
xnn_setup_add_nd_f16(
|
|
binary_elementwise_op,
|
|
num_input1_dims(),
|
|
input1_shape().data(),
|
|
num_input2_dims(),
|
|
input2_shape().data(),
|
|
input1.data(), input2.data(), output.data(),
|
|
nullptr /* thread pool */));
|
|
break;
|
|
case OperationType::Multiply:
|
|
ASSERT_EQ(xnn_status_success,
|
|
xnn_setup_multiply_nd_f16(
|
|
binary_elementwise_op,
|
|
num_input1_dims(),
|
|
input1_shape().data(),
|
|
num_input2_dims(),
|
|
input2_shape().data(),
|
|
input1.data(), input2.data(), output.data(),
|
|
nullptr /* thread pool */));
|
|
break;
|
|
default:
|
|
FAIL() << "Unsupported operation type";
|
|
}
|
|
|
|
ASSERT_EQ(xnn_status_success,
|
|
xnn_run_operator(binary_elementwise_op, nullptr /* thread pool */));
|
|
|
|
// Verify results.
|
|
for (size_t i = 0; i < output_dims[0]; i++) {
|
|
for (size_t j = 0; j < output_dims[1]; j++) {
|
|
for (size_t k = 0; k < output_dims[2]; k++) {
|
|
for (size_t l = 0; l < output_dims[3]; l++) {
|
|
for (size_t m = 0; m < output_dims[4]; m++) {
|
|
for (size_t n = 0; n < output_dims[5]; n++) {
|
|
const size_t index =
|
|
i * output_strides[0] + j * output_strides[1] + k * output_strides[2] + l * output_strides[3] + m * output_strides[4] + n * output_strides[5];
|
|
ASSERT_NEAR(fp16_ieee_to_fp32_value(output[index]), output_ref[index], std::max(1.0e-4f, std::abs(output_ref[index]) * 1.0e-2f))
|
|
<< "(i, j, k, l, m, n) = (" << i << ", " << j << ", " << k << ", " << l << ", " << m << ", " << n << ")";
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void TestF32() const {
|
|
ASSERT_NE(operation_type(), OperationType::Unknown);
|
|
|
|
std::random_device random_device;
|
|
auto rng = std::mt19937(random_device());
|
|
auto f32rng = std::bind(std::uniform_real_distribution<float>(0.01f, 1.0f), rng);
|
|
|
|
// Compute generalized shapes.
|
|
std::array<size_t, XNN_MAX_TENSOR_DIMS> input1_dims;
|
|
std::array<size_t, XNN_MAX_TENSOR_DIMS> input2_dims;
|
|
std::array<size_t, XNN_MAX_TENSOR_DIMS> output_dims;
|
|
std::fill(input1_dims.begin(), input1_dims.end(), 1);
|
|
std::fill(input2_dims.begin(), input2_dims.end(), 1);
|
|
std::fill(output_dims.begin(), output_dims.end(), 1);
|
|
std::copy(input1_shape().cbegin(), input1_shape().cend(), input1_dims.end() - num_input1_dims());
|
|
std::copy(input2_shape().cbegin(), input2_shape().cend(), input2_dims.end() - num_input2_dims());
|
|
for (size_t i = 0; i < XNN_MAX_TENSOR_DIMS; i++) {
|
|
if (input1_dims[i] != 1 && input2_dims[i] != 1) {
|
|
ASSERT_EQ(input1_dims[i], input2_dims[i]);
|
|
}
|
|
output_dims[i] = std::max(input1_dims[i], input2_dims[i]);
|
|
}
|
|
const size_t num_output_elements =
|
|
std::accumulate(output_dims.begin(), output_dims.end(), size_t(1), std::multiplies<size_t>());
|
|
|
|
// Compute generalized strides.
|
|
std::array<size_t, XNN_MAX_TENSOR_DIMS> input1_strides;
|
|
std::array<size_t, XNN_MAX_TENSOR_DIMS> input2_strides;
|
|
std::array<size_t, XNN_MAX_TENSOR_DIMS> output_strides;
|
|
size_t input1_stride = 1, input2_stride = 1, output_stride = 1;
|
|
for (size_t i = XNN_MAX_TENSOR_DIMS; i != 0; i--) {
|
|
input1_strides[i - 1] = input1_dims[i - 1] == 1 ? 0 : input1_stride;
|
|
input2_strides[i - 1] = input2_dims[i - 1] == 1 ? 0 : input2_stride;
|
|
output_strides[i - 1] = output_stride;
|
|
input1_stride *= input1_dims[i - 1];
|
|
input2_stride *= input2_dims[i - 1];
|
|
output_stride *= output_dims[i - 1];
|
|
}
|
|
|
|
std::vector<float> input1(XNN_EXTRA_BYTES / sizeof(float) + num_input1_elements());
|
|
std::vector<float> input2(XNN_EXTRA_BYTES / sizeof(float) + num_input2_elements());
|
|
std::vector<float> output(num_output_elements);
|
|
std::vector<float> output_ref(num_output_elements);
|
|
for (size_t iteration = 0; iteration < iterations(); iteration++) {
|
|
std::generate(input1.begin(), input1.end(), std::ref(f32rng));
|
|
std::generate(input2.begin(), input2.end(), std::ref(f32rng));
|
|
std::fill(output.begin(), output.end(), nanf(""));
|
|
|
|
// Compute reference results.
|
|
for (size_t i = 0; i < output_dims[0]; i++) {
|
|
for (size_t j = 0; j < output_dims[1]; j++) {
|
|
for (size_t k = 0; k < output_dims[2]; k++) {
|
|
for (size_t l = 0; l < output_dims[3]; l++) {
|
|
for (size_t m = 0; m < output_dims[4]; m++) {
|
|
for (size_t n = 0; n < output_dims[5]; n++) {
|
|
output_ref[i * output_strides[0] + j * output_strides[1] + k * output_strides[2] + l * output_strides[3] + m * output_strides[4] + n * output_strides[5]] = Compute(
|
|
input1[i * input1_strides[0] + j * input1_strides[1] + k * input1_strides[2] + l * input1_strides[3] + m * input1_strides[4] + n * input1_strides[5]],
|
|
input2[i * input2_strides[0] + j * input2_strides[1] + k * input2_strides[2] + l * input2_strides[3] + m * input2_strides[4] + n * input2_strides[5]]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
|
|
const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
|
|
const float accumulated_range = accumulated_max - accumulated_min;
|
|
const float output_min = num_output_elements == 1 ?
|
|
-std::numeric_limits<float>::infinity() : accumulated_min + accumulated_range / 255.0f * float(qmin());
|
|
const float output_max = num_output_elements == 1 ?
|
|
+std::numeric_limits<float>::infinity() : accumulated_max - accumulated_range / 255.0f * float(255 - qmax());
|
|
for (float& output_value : output_ref) {
|
|
output_value = std::min(std::max(output_value, output_min), output_max);
|
|
}
|
|
|
|
// Create, setup, run, and destroy a binary elementwise operator.
|
|
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
|
|
xnn_operator_t binary_elementwise_op = nullptr;
|
|
|
|
switch (operation_type()) {
|
|
case OperationType::Add:
|
|
ASSERT_EQ(xnn_status_success,
|
|
xnn_create_add_nd_f32(
|
|
output_min, output_max,
|
|
0, &binary_elementwise_op));
|
|
break;
|
|
case OperationType::Divide:
|
|
ASSERT_EQ(xnn_status_success,
|
|
xnn_create_divide_nd_f32(
|
|
output_min, output_max,
|
|
0, &binary_elementwise_op));
|
|
break;
|
|
case OperationType::Maximum:
|
|
ASSERT_EQ(xnn_status_success,
|
|
xnn_create_maximum_nd_f32(
|
|
0, &binary_elementwise_op));
|
|
break;
|
|
case OperationType::Minimum:
|
|
ASSERT_EQ(xnn_status_success,
|
|
xnn_create_minimum_nd_f32(
|
|
0, &binary_elementwise_op));
|
|
break;
|
|
case OperationType::Multiply:
|
|
ASSERT_EQ(xnn_status_success,
|
|
xnn_create_multiply_nd_f32(
|
|
output_min, output_max,
|
|
0, &binary_elementwise_op));
|
|
break;
|
|
case OperationType::Subtract:
|
|
ASSERT_EQ(xnn_status_success,
|
|
xnn_create_subtract_nd_f32(
|
|
output_min, output_max,
|
|
0, &binary_elementwise_op));
|
|
break;
|
|
case OperationType::SquaredDifference:
|
|
ASSERT_EQ(xnn_status_success,
|
|
xnn_create_squared_difference_nd_f32(
|
|
0, &binary_elementwise_op));
|
|
break;
|
|
default:
|
|
FAIL() << "Unsupported operation type";
|
|
}
|
|
ASSERT_NE(nullptr, binary_elementwise_op);
|
|
|
|
// Smart pointer to automatically delete binary_elementwise_op.
|
|
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_binary_elementwise_op(binary_elementwise_op, xnn_delete_operator);
|
|
|
|
switch (operation_type()) {
|
|
case OperationType::Add:
|
|
ASSERT_EQ(xnn_status_success,
|
|
xnn_setup_add_nd_f32(
|
|
binary_elementwise_op,
|
|
num_input1_dims(),
|
|
input1_shape().data(),
|
|
num_input2_dims(),
|
|
input2_shape().data(),
|
|
input1.data(), input2.data(), output.data(),
|
|
nullptr /* thread pool */));
|
|
break;
|
|
case OperationType::Divide:
|
|
ASSERT_EQ(xnn_status_success,
|
|
xnn_setup_divide_nd_f32(
|
|
binary_elementwise_op,
|
|
num_input1_dims(),
|
|
input1_shape().data(),
|
|
num_input2_dims(),
|
|
input2_shape().data(),
|
|
input1.data(), input2.data(), output.data(),
|
|
nullptr /* thread pool */));
|
|
break;
|
|
case OperationType::Maximum:
|
|
ASSERT_EQ(xnn_status_success,
|
|
xnn_setup_maximum_nd_f32(
|
|
binary_elementwise_op,
|
|
num_input1_dims(),
|
|
input1_shape().data(),
|
|
num_input2_dims(),
|
|
input2_shape().data(),
|
|
input1.data(), input2.data(), output.data(),
|
|
nullptr /* thread pool */));
|
|
break;
|
|
case OperationType::Minimum:
|
|
ASSERT_EQ(xnn_status_success,
|
|
xnn_setup_minimum_nd_f32(
|
|
binary_elementwise_op,
|
|
num_input1_dims(),
|
|
input1_shape().data(),
|
|
num_input2_dims(),
|
|
input2_shape().data(),
|
|
input1.data(), input2.data(), output.data(),
|
|
nullptr /* thread pool */));
|
|
break;
|
|
case OperationType::Multiply:
|
|
ASSERT_EQ(xnn_status_success,
|
|
xnn_setup_multiply_nd_f32(
|
|
binary_elementwise_op,
|
|
num_input1_dims(),
|
|
input1_shape().data(),
|
|
num_input2_dims(),
|
|
input2_shape().data(),
|
|
input1.data(), input2.data(), output.data(),
|
|
nullptr /* thread pool */));
|
|
break;
|
|
case OperationType::Subtract:
|
|
ASSERT_EQ(xnn_status_success,
|
|
xnn_setup_subtract_nd_f32(
|
|
binary_elementwise_op,
|
|
num_input1_dims(),
|
|
input1_shape().data(),
|
|
num_input2_dims(),
|
|
input2_shape().data(),
|
|
input1.data(), input2.data(), output.data(),
|
|
nullptr /* thread pool */));
|
|
break;
|
|
case OperationType::SquaredDifference:
|
|
ASSERT_EQ(xnn_status_success,
|
|
xnn_setup_squared_difference_nd_f32(
|
|
binary_elementwise_op,
|
|
num_input1_dims(),
|
|
input1_shape().data(),
|
|
num_input2_dims(),
|
|
input2_shape().data(),
|
|
input1.data(), input2.data(), output.data(),
|
|
nullptr /* thread pool */));
|
|
break;
|
|
default:
|
|
FAIL() << "Unsupported operation type";
|
|
}
|
|
|
|
ASSERT_EQ(xnn_status_success,
|
|
xnn_run_operator(binary_elementwise_op, nullptr /* thread pool */));
|
|
|
|
// Verify results.
|
|
for (size_t i = 0; i < output_dims[0]; i++) {
|
|
for (size_t j = 0; j < output_dims[1]; j++) {
|
|
for (size_t k = 0; k < output_dims[2]; k++) {
|
|
for (size_t l = 0; l < output_dims[3]; l++) {
|
|
for (size_t m = 0; m < output_dims[4]; m++) {
|
|
for (size_t n = 0; n < output_dims[5]; n++) {
|
|
const size_t index =
|
|
i * output_strides[0] + j * output_strides[1] + k * output_strides[2] + l * output_strides[3] + m * output_strides[4] + n * output_strides[5];
|
|
ASSERT_NEAR(output[index], output_ref[index], 1.0e-6f * std::abs(output_ref[index]))
|
|
<< "(i, j, k, l, m, n) = (" << i << ", " << j << ", " << k << ", " << l << ", " << m << ", " << n << ")";
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
std::vector<size_t> input1_shape_;
|
|
std::vector<size_t> input2_shape_;
|
|
int16_t input1_zero_point_{0};
|
|
float input1_scale_{1.0f};
|
|
int16_t input2_zero_point_{0};
|
|
float input2_scale_{1.0f};
|
|
int16_t output_zero_point_{0};
|
|
float output_scale_{1.0f};
|
|
uint8_t qmin_{0};
|
|
uint8_t qmax_{255};
|
|
OperationType operation_type_{OperationType::Unknown};
|
|
size_t iterations_{3};
|
|
};
|