You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
36 lines
979 B
36 lines
979 B
// polynomial for approximating log(1+x)
|
|
//
|
|
// Copyright (c) 2019, Arm Limited.
|
|
// SPDX-License-Identifier: MIT
|
|
|
|
deg = 12; // poly degree
|
|
// |log(1+x)| > 0x1p-4 outside the interval
|
|
a = -0x1p-4;
|
|
b = 0x1.09p-4;
|
|
|
|
// find log(1+x)/x polynomial with minimal relative error
|
|
// (minimal relative error polynomial for log(1+x) is the same * x)
|
|
deg = deg-1; // because of /x
|
|
|
|
// f = log(1+x)/x; using taylor series
|
|
f = 0;
|
|
for i from 0 to 60 do { f = f + (-x)^i/(i+1); };
|
|
|
|
// return p that minimizes |f(x) - poly(x) - x^d*p(x)|/|f(x)|
|
|
approx = proc(poly,d) {
|
|
return remez(1 - poly(x)/f(x), deg-d, [a;b], x^d/f(x), 1e-10);
|
|
};
|
|
|
|
// first coeff is fixed, iteratively find optimal double prec coeffs
|
|
poly = 1;
|
|
for i from 1 to deg do {
|
|
p = roundcoefficients(approx(poly,i), [|D ...|]);
|
|
poly = poly + x^i*coeff(p,0);
|
|
};
|
|
|
|
display = hexadecimal;
|
|
print("rel error:", accurateinfnorm(1-poly(x)/f(x), [a;b], 30));
|
|
print("in [",a,b,"]");
|
|
print("coeffs:");
|
|
for i from 0 to deg do coeff(poly,i);
|