You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

225 lines
6.0 KiB

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_ALIGNED_VECTOR3
#define EIGEN_ALIGNED_VECTOR3
#include <Eigen/Geometry>
namespace Eigen {
/**
* \defgroup AlignedVector3_Module Aligned vector3 module
*
* \code
* #include <unsupported/Eigen/AlignedVector3>
* \endcode
*/
//@{
/** \class AlignedVector3
*
* \brief A vectorization friendly 3D vector
*
* This class represents a 3D vector internally using a 4D vector
* such that vectorization can be seamlessly enabled. Of course,
* the same result can be achieved by directly using a 4D vector.
* This class makes this process simpler.
*
*/
// TODO specialize Cwise
template<typename _Scalar> class AlignedVector3;
namespace internal {
template<typename _Scalar> struct traits<AlignedVector3<_Scalar> >
: traits<Matrix<_Scalar,3,1,0,4,1> >
{
};
}
template<typename _Scalar> class AlignedVector3
: public MatrixBase<AlignedVector3<_Scalar> >
{
typedef Matrix<_Scalar,4,1> CoeffType;
CoeffType m_coeffs;
public:
typedef MatrixBase<AlignedVector3<_Scalar> > Base;
EIGEN_DENSE_PUBLIC_INTERFACE(AlignedVector3)
using Base::operator*;
inline Index rows() const { return 3; }
inline Index cols() const { return 1; }
Scalar* data() { return m_coeffs.data(); }
const Scalar* data() const { return m_coeffs.data(); }
Index innerStride() const { return 1; }
Index outerStride() const { return 3; }
inline const Scalar& coeff(Index row, Index col) const
{ return m_coeffs.coeff(row, col); }
inline Scalar& coeffRef(Index row, Index col)
{ return m_coeffs.coeffRef(row, col); }
inline const Scalar& coeff(Index index) const
{ return m_coeffs.coeff(index); }
inline Scalar& coeffRef(Index index)
{ return m_coeffs.coeffRef(index);}
inline AlignedVector3(const Scalar& x, const Scalar& y, const Scalar& z)
: m_coeffs(x, y, z, Scalar(0))
{}
inline AlignedVector3(const AlignedVector3& other)
: Base(), m_coeffs(other.m_coeffs)
{}
template<typename XprType, int Size=XprType::SizeAtCompileTime>
struct generic_assign_selector {};
template<typename XprType> struct generic_assign_selector<XprType,4>
{
inline static void run(AlignedVector3& dest, const XprType& src)
{
dest.m_coeffs = src;
}
};
template<typename XprType> struct generic_assign_selector<XprType,3>
{
inline static void run(AlignedVector3& dest, const XprType& src)
{
dest.m_coeffs.template head<3>() = src;
dest.m_coeffs.w() = Scalar(0);
}
};
template<typename Derived>
inline AlignedVector3(const MatrixBase<Derived>& other)
{
generic_assign_selector<Derived>::run(*this,other.derived());
}
inline AlignedVector3& operator=(const AlignedVector3& other)
{ m_coeffs = other.m_coeffs; return *this; }
template <typename Derived>
inline AlignedVector3& operator=(const MatrixBase<Derived>& other)
{
generic_assign_selector<Derived>::run(*this,other.derived());
return *this;
}
inline AlignedVector3 operator+(const AlignedVector3& other) const
{ return AlignedVector3(m_coeffs + other.m_coeffs); }
inline AlignedVector3& operator+=(const AlignedVector3& other)
{ m_coeffs += other.m_coeffs; return *this; }
inline AlignedVector3 operator-(const AlignedVector3& other) const
{ return AlignedVector3(m_coeffs - other.m_coeffs); }
inline AlignedVector3 operator-=(const AlignedVector3& other)
{ m_coeffs -= other.m_coeffs; return *this; }
inline AlignedVector3 operator*(const Scalar& s) const
{ return AlignedVector3(m_coeffs * s); }
inline friend AlignedVector3 operator*(const Scalar& s,const AlignedVector3& vec)
{ return AlignedVector3(s * vec.m_coeffs); }
inline AlignedVector3& operator*=(const Scalar& s)
{ m_coeffs *= s; return *this; }
inline AlignedVector3 operator/(const Scalar& s) const
{ return AlignedVector3(m_coeffs / s); }
inline AlignedVector3& operator/=(const Scalar& s)
{ m_coeffs /= s; return *this; }
inline Scalar dot(const AlignedVector3& other) const
{
eigen_assert(m_coeffs.w()==Scalar(0));
eigen_assert(other.m_coeffs.w()==Scalar(0));
return m_coeffs.dot(other.m_coeffs);
}
inline void normalize()
{
m_coeffs /= norm();
}
inline AlignedVector3 normalized() const
{
return AlignedVector3(m_coeffs / norm());
}
inline Scalar sum() const
{
eigen_assert(m_coeffs.w()==Scalar(0));
return m_coeffs.sum();
}
inline Scalar squaredNorm() const
{
eigen_assert(m_coeffs.w()==Scalar(0));
return m_coeffs.squaredNorm();
}
inline Scalar norm() const
{
using std::sqrt;
return sqrt(squaredNorm());
}
inline AlignedVector3 cross(const AlignedVector3& other) const
{
return AlignedVector3(m_coeffs.cross3(other.m_coeffs));
}
template<typename Derived>
inline bool isApprox(const MatrixBase<Derived>& other, const RealScalar& eps=NumTraits<Scalar>::dummy_precision()) const
{
return m_coeffs.template head<3>().isApprox(other,eps);
}
CoeffType& coeffs() { return m_coeffs; }
const CoeffType& coeffs() const { return m_coeffs; }
};
namespace internal {
template<typename _Scalar>
struct eval<AlignedVector3<_Scalar>, Dense>
{
typedef const AlignedVector3<_Scalar>& type;
};
template<typename Scalar>
struct evaluator<AlignedVector3<Scalar> >
: evaluator<Matrix<Scalar,4,1> >
{
typedef AlignedVector3<Scalar> XprType;
typedef evaluator<Matrix<Scalar,4,1> > Base;
evaluator(const XprType &m) : Base(m.coeffs()) {}
};
}
//@}
}
#endif // EIGEN_ALIGNED_VECTOR3