You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1458 lines
41 KiB

/*
* Copyright (C) 2008 Sun Microsystems, Inc. All rights reserved.
*/
#include <stdio.h>
#include <stdint.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <linux/sockios.h>
#include <arpa/inet.h>
#include "internal.h"
static void invert_flow_mask(struct ethtool_rx_flow_spec *fsp)
{
size_t i;
for (i = 0; i < sizeof(fsp->m_u); i++)
fsp->m_u.hdata[i] ^= 0xFF;
}
static void rxclass_print_ipv4_rule(__be32 sip, __be32 sipm, __be32 dip,
__be32 dipm, u8 tos, u8 tosm)
{
char sip_str[INET_ADDRSTRLEN];
char sipm_str[INET_ADDRSTRLEN];
char dip_str[INET_ADDRSTRLEN];
char dipm_str[INET_ADDRSTRLEN];
fprintf(stdout,
"\tSrc IP addr: %s mask: %s\n"
"\tDest IP addr: %s mask: %s\n"
"\tTOS: 0x%x mask: 0x%x\n",
inet_ntop(AF_INET, &sip, sip_str, INET_ADDRSTRLEN),
inet_ntop(AF_INET, &sipm, sipm_str, INET_ADDRSTRLEN),
inet_ntop(AF_INET, &dip, dip_str, INET_ADDRSTRLEN),
inet_ntop(AF_INET, &dipm, dipm_str, INET_ADDRSTRLEN),
tos, tosm);
}
static void rxclass_print_ipv6_rule(__be32 *sip, __be32 *sipm, __be32 *dip,
__be32 *dipm, u8 tclass, u8 tclassm)
{
char sip_str[INET6_ADDRSTRLEN];
char sipm_str[INET6_ADDRSTRLEN];
char dip_str[INET6_ADDRSTRLEN];
char dipm_str[INET6_ADDRSTRLEN];
fprintf(stdout,
"\tSrc IP addr: %s mask: %s\n"
"\tDest IP addr: %s mask: %s\n"
"\tTraffic Class: 0x%x mask: 0x%x\n",
inet_ntop(AF_INET6, sip, sip_str, INET6_ADDRSTRLEN),
inet_ntop(AF_INET6, sipm, sipm_str, INET6_ADDRSTRLEN),
inet_ntop(AF_INET6, dip, dip_str, INET6_ADDRSTRLEN),
inet_ntop(AF_INET6, dipm, dipm_str, INET6_ADDRSTRLEN),
tclass, tclassm);
}
static void rxclass_print_nfc_spec_ext(struct ethtool_rx_flow_spec *fsp)
{
if (fsp->flow_type & FLOW_EXT) {
u64 data, datam;
__u16 etype, etypem, tci, tcim;
etype = ntohs(fsp->h_ext.vlan_etype);
etypem = ntohs(~fsp->m_ext.vlan_etype);
tci = ntohs(fsp->h_ext.vlan_tci);
tcim = ntohs(~fsp->m_ext.vlan_tci);
data = (u64)ntohl(fsp->h_ext.data[0]) << 32;
data |= (u64)ntohl(fsp->h_ext.data[1]);
datam = (u64)ntohl(~fsp->m_ext.data[0]) << 32;
datam |= (u64)ntohl(~fsp->m_ext.data[1]);
fprintf(stdout,
"\tVLAN EtherType: 0x%x mask: 0x%x\n"
"\tVLAN: 0x%x mask: 0x%x\n"
"\tUser-defined: 0x%llx mask: 0x%llx\n",
etype, etypem, tci, tcim, data, datam);
}
if (fsp->flow_type & FLOW_MAC_EXT) {
unsigned char *dmac, *dmacm;
dmac = fsp->h_ext.h_dest;
dmacm = fsp->m_ext.h_dest;
fprintf(stdout,
"\tDest MAC addr: %02X:%02X:%02X:%02X:%02X:%02X"
" mask: %02X:%02X:%02X:%02X:%02X:%02X\n",
dmac[0], dmac[1], dmac[2], dmac[3], dmac[4],
dmac[5], dmacm[0], dmacm[1], dmacm[2], dmacm[3],
dmacm[4], dmacm[5]);
}
}
static void rxclass_print_nfc_rule(struct ethtool_rx_flow_spec *fsp,
__u32 rss_context)
{
unsigned char *smac, *smacm, *dmac, *dmacm;
__u32 flow_type;
fprintf(stdout, "Filter: %d\n", fsp->location);
flow_type = fsp->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT | FLOW_RSS);
invert_flow_mask(fsp);
switch (flow_type) {
case TCP_V4_FLOW:
case UDP_V4_FLOW:
case SCTP_V4_FLOW:
if (flow_type == TCP_V4_FLOW)
fprintf(stdout, "\tRule Type: TCP over IPv4\n");
else if (flow_type == UDP_V4_FLOW)
fprintf(stdout, "\tRule Type: UDP over IPv4\n");
else
fprintf(stdout, "\tRule Type: SCTP over IPv4\n");
rxclass_print_ipv4_rule(fsp->h_u.tcp_ip4_spec.ip4src,
fsp->m_u.tcp_ip4_spec.ip4src,
fsp->h_u.tcp_ip4_spec.ip4dst,
fsp->m_u.tcp_ip4_spec.ip4dst,
fsp->h_u.tcp_ip4_spec.tos,
fsp->m_u.tcp_ip4_spec.tos);
fprintf(stdout,
"\tSrc port: %d mask: 0x%x\n"
"\tDest port: %d mask: 0x%x\n",
ntohs(fsp->h_u.tcp_ip4_spec.psrc),
ntohs(fsp->m_u.tcp_ip4_spec.psrc),
ntohs(fsp->h_u.tcp_ip4_spec.pdst),
ntohs(fsp->m_u.tcp_ip4_spec.pdst));
break;
case AH_V4_FLOW:
case ESP_V4_FLOW:
if (flow_type == AH_V4_FLOW)
fprintf(stdout, "\tRule Type: IPSEC AH over IPv4\n");
else
fprintf(stdout, "\tRule Type: IPSEC ESP over IPv4\n");
rxclass_print_ipv4_rule(fsp->h_u.ah_ip4_spec.ip4src,
fsp->m_u.ah_ip4_spec.ip4src,
fsp->h_u.ah_ip4_spec.ip4dst,
fsp->m_u.ah_ip4_spec.ip4dst,
fsp->h_u.ah_ip4_spec.tos,
fsp->m_u.ah_ip4_spec.tos);
fprintf(stdout,
"\tSPI: %d mask: 0x%x\n",
ntohl(fsp->h_u.esp_ip4_spec.spi),
ntohl(fsp->m_u.esp_ip4_spec.spi));
break;
case IPV4_USER_FLOW:
fprintf(stdout, "\tRule Type: Raw IPv4\n");
rxclass_print_ipv4_rule(fsp->h_u.usr_ip4_spec.ip4src,
fsp->m_u.usr_ip4_spec.ip4src,
fsp->h_u.usr_ip4_spec.ip4dst,
fsp->m_u.usr_ip4_spec.ip4dst,
fsp->h_u.usr_ip4_spec.tos,
fsp->m_u.usr_ip4_spec.tos);
fprintf(stdout,
"\tProtocol: %d mask: 0x%x\n"
"\tL4 bytes: 0x%x mask: 0x%x\n",
fsp->h_u.usr_ip4_spec.proto,
fsp->m_u.usr_ip4_spec.proto,
ntohl(fsp->h_u.usr_ip4_spec.l4_4_bytes),
ntohl(fsp->m_u.usr_ip4_spec.l4_4_bytes));
break;
case TCP_V6_FLOW:
case UDP_V6_FLOW:
case SCTP_V6_FLOW:
if (flow_type == TCP_V6_FLOW)
fprintf(stdout, "\tRule Type: TCP over IPv6\n");
else if (flow_type == UDP_V6_FLOW)
fprintf(stdout, "\tRule Type: UDP over IPv6\n");
else
fprintf(stdout, "\tRule Type: SCTP over IPv6\n");
rxclass_print_ipv6_rule(fsp->h_u.tcp_ip6_spec.ip6src,
fsp->m_u.tcp_ip6_spec.ip6src,
fsp->h_u.tcp_ip6_spec.ip6dst,
fsp->m_u.tcp_ip6_spec.ip6dst,
fsp->h_u.tcp_ip6_spec.tclass,
fsp->m_u.tcp_ip6_spec.tclass);
fprintf(stdout,
"\tSrc port: %d mask: 0x%x\n"
"\tDest port: %d mask: 0x%x\n",
ntohs(fsp->h_u.tcp_ip6_spec.psrc),
ntohs(fsp->m_u.tcp_ip6_spec.psrc),
ntohs(fsp->h_u.tcp_ip6_spec.pdst),
ntohs(fsp->m_u.tcp_ip6_spec.pdst));
break;
case AH_V6_FLOW:
case ESP_V6_FLOW:
if (flow_type == AH_V6_FLOW)
fprintf(stdout, "\tRule Type: IPSEC AH over IPv6\n");
else
fprintf(stdout, "\tRule Type: IPSEC ESP over IPv6\n");
rxclass_print_ipv6_rule(fsp->h_u.ah_ip6_spec.ip6src,
fsp->m_u.ah_ip6_spec.ip6src,
fsp->h_u.ah_ip6_spec.ip6dst,
fsp->m_u.ah_ip6_spec.ip6dst,
fsp->h_u.ah_ip6_spec.tclass,
fsp->m_u.ah_ip6_spec.tclass);
fprintf(stdout,
"\tSPI: %d mask: 0x%x\n",
ntohl(fsp->h_u.esp_ip6_spec.spi),
ntohl(fsp->m_u.esp_ip6_spec.spi));
break;
case IPV6_USER_FLOW:
fprintf(stdout, "\tRule Type: Raw IPv6\n");
rxclass_print_ipv6_rule(fsp->h_u.usr_ip6_spec.ip6src,
fsp->m_u.usr_ip6_spec.ip6src,
fsp->h_u.usr_ip6_spec.ip6dst,
fsp->m_u.usr_ip6_spec.ip6dst,
fsp->h_u.usr_ip6_spec.tclass,
fsp->m_u.usr_ip6_spec.tclass);
fprintf(stdout,
"\tProtocol: %d mask: 0x%x\n"
"\tL4 bytes: 0x%x mask: 0x%x\n",
fsp->h_u.usr_ip6_spec.l4_proto,
fsp->m_u.usr_ip6_spec.l4_proto,
ntohl(fsp->h_u.usr_ip6_spec.l4_4_bytes),
ntohl(fsp->m_u.usr_ip6_spec.l4_4_bytes));
break;
case ETHER_FLOW:
dmac = fsp->h_u.ether_spec.h_dest;
dmacm = fsp->m_u.ether_spec.h_dest;
smac = fsp->h_u.ether_spec.h_source;
smacm = fsp->m_u.ether_spec.h_source;
fprintf(stdout,
"\tFlow Type: Raw Ethernet\n"
"\tSrc MAC addr: %02X:%02X:%02X:%02X:%02X:%02X"
" mask: %02X:%02X:%02X:%02X:%02X:%02X\n"
"\tDest MAC addr: %02X:%02X:%02X:%02X:%02X:%02X"
" mask: %02X:%02X:%02X:%02X:%02X:%02X\n"
"\tEthertype: 0x%X mask: 0x%X\n",
smac[0], smac[1], smac[2], smac[3], smac[4], smac[5],
smacm[0], smacm[1], smacm[2], smacm[3], smacm[4],
smacm[5], dmac[0], dmac[1], dmac[2], dmac[3], dmac[4],
dmac[5], dmacm[0], dmacm[1], dmacm[2], dmacm[3],
dmacm[4], dmacm[5],
ntohs(fsp->h_u.ether_spec.h_proto),
ntohs(fsp->m_u.ether_spec.h_proto));
break;
default:
fprintf(stdout,
"\tUnknown Flow type: %d\n", flow_type);
break;
}
rxclass_print_nfc_spec_ext(fsp);
if (fsp->flow_type & FLOW_RSS)
fprintf(stdout, "\tRSS Context ID: %u\n", rss_context);
if (fsp->ring_cookie == RX_CLS_FLOW_DISC) {
fprintf(stdout, "\tAction: Drop\n");
} else if (fsp->ring_cookie == RX_CLS_FLOW_WAKE) {
fprintf(stdout, "\tAction: Wake-on-LAN\n");
} else {
u64 vf = ethtool_get_flow_spec_ring_vf(fsp->ring_cookie);
u64 queue = ethtool_get_flow_spec_ring(fsp->ring_cookie);
/* A value of zero indicates that this rule targeted the main
* function. A positive value indicates which virtual function
* was targeted, so we'll subtract 1 in order to show the
* correct VF index
*/
if (vf)
fprintf(stdout, "\tAction: Direct to VF %llu queue %llu\n",
vf - 1, queue);
else
fprintf(stdout, "\tAction: Direct to queue %llu\n",
queue);
}
fprintf(stdout, "\n");
}
static void rxclass_print_rule(struct ethtool_rx_flow_spec *fsp,
__u32 rss_context)
{
/* print the rule in this location */
switch (fsp->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT | FLOW_RSS)) {
case TCP_V4_FLOW:
case UDP_V4_FLOW:
case SCTP_V4_FLOW:
case AH_V4_FLOW:
case ESP_V4_FLOW:
case TCP_V6_FLOW:
case UDP_V6_FLOW:
case SCTP_V6_FLOW:
case AH_V6_FLOW:
case ESP_V6_FLOW:
case IPV6_USER_FLOW:
case ETHER_FLOW:
rxclass_print_nfc_rule(fsp, rss_context);
break;
case IPV4_USER_FLOW:
if (fsp->h_u.usr_ip4_spec.ip_ver == ETH_RX_NFC_IP4)
rxclass_print_nfc_rule(fsp, rss_context);
else /* IPv6 uses IPV6_USER_FLOW */
fprintf(stderr, "IPV4_USER_FLOW with wrong ip_ver\n");
break;
default:
fprintf(stderr, "rxclass: Unknown flow type\n");
break;
}
}
static int rxclass_get_dev_info(struct cmd_context *ctx, __u32 *count,
int *driver_select)
{
struct ethtool_rxnfc nfccmd;
int err;
nfccmd.cmd = ETHTOOL_GRXCLSRLCNT;
nfccmd.data = 0;
err = send_ioctl(ctx, &nfccmd);
*count = nfccmd.rule_cnt;
if (driver_select)
*driver_select = !!(nfccmd.data & RX_CLS_LOC_SPECIAL);
if (err < 0)
perror("rxclass: Cannot get RX class rule count");
return err;
}
int rxclass_rule_get(struct cmd_context *ctx, __u32 loc)
{
struct ethtool_rxnfc nfccmd;
int err;
/* fetch rule from netdev */
nfccmd.cmd = ETHTOOL_GRXCLSRULE;
memset(&nfccmd.fs, 0, sizeof(struct ethtool_rx_flow_spec));
nfccmd.fs.location = loc;
err = send_ioctl(ctx, &nfccmd);
if (err < 0) {
perror("rxclass: Cannot get RX class rule");
return err;
}
/* display rule */
rxclass_print_rule(&nfccmd.fs, (__u32)nfccmd.rss_context);
return err;
}
int rxclass_rule_getall(struct cmd_context *ctx)
{
struct ethtool_rxnfc *nfccmd;
__u32 *rule_locs;
int err, i;
__u32 count;
/* determine rule count */
err = rxclass_get_dev_info(ctx, &count, NULL);
if (err < 0)
return err;
fprintf(stdout, "Total %d rules\n\n", count);
/* alloc memory for request of location list */
nfccmd = calloc(1, sizeof(*nfccmd) + (count * sizeof(__u32)));
if (!nfccmd) {
perror("rxclass: Cannot allocate memory for"
" RX class rule locations");
return -ENOMEM;
}
/* request location list */
nfccmd->cmd = ETHTOOL_GRXCLSRLALL;
nfccmd->rule_cnt = count;
err = send_ioctl(ctx, nfccmd);
if (err < 0) {
perror("rxclass: Cannot get RX class rules");
free(nfccmd);
return err;
}
/* write locations to bitmap */
rule_locs = nfccmd->rule_locs;
for (i = 0; i < count; i++) {
err = rxclass_rule_get(ctx, rule_locs[i]);
if (err < 0)
break;
}
/* free memory and set flag to avoid reinit */
free(nfccmd);
return err;
}
/*
* This is a simple rule manager implementation for ordering rx flow
* classification rules based on newest rules being first in the list.
* The assumption is that this rule manager is the only one adding rules to
* the device's hardware classifier.
*/
struct rmgr_ctrl {
/* flag for device/driver that can select locations itself */
int driver_select;
/* slot contains a bitmap indicating which filters are valid */
unsigned long *slot;
__u32 n_rules;
__u32 size;
};
static int rmgr_ins(struct rmgr_ctrl *rmgr, __u32 loc)
{
/* verify location is in rule manager range */
if (loc >= rmgr->size) {
fprintf(stderr, "rmgr: Location out of range\n");
return -1;
}
/* set bit for the rule */
set_bit(loc, rmgr->slot);
return 0;
}
static int rmgr_find_empty_slot(struct rmgr_ctrl *rmgr,
struct ethtool_rx_flow_spec *fsp)
{
__u32 loc;
__u32 slot_num;
/* leave this to the driver if possible */
if (rmgr->driver_select)
return 0;
/* start at the end of the list since it is lowest priority */
loc = rmgr->size - 1;
/* locate the first slot a rule can be placed in */
slot_num = loc / BITS_PER_LONG;
/*
* Avoid testing individual bits by inverting the word and checking
* to see if any bits are left set, if so there are empty spots. By
* moving 1 + loc % BITS_PER_LONG we align ourselves to the last bit
* in the previous word.
*
* If loc rolls over it should be greater than or equal to rmgr->size
* and as such we know we have reached the end of the list.
*/
if (!~(rmgr->slot[slot_num] | (~1UL << rmgr->size % BITS_PER_LONG))) {
loc -= 1 + (loc % BITS_PER_LONG);
slot_num--;
}
/*
* Now that we are aligned with the last bit in each long we can just
* go though and eliminate all the longs with no free bits
*/
while (loc < rmgr->size && !~(rmgr->slot[slot_num])) {
loc -= BITS_PER_LONG;
slot_num--;
}
/*
* If we still are inside the range, test individual bits as one is
* likely available for our use.
*/
while (loc < rmgr->size && test_bit(loc, rmgr->slot))
loc--;
/* location found, insert rule */
if (loc < rmgr->size) {
fsp->location = loc;
return rmgr_ins(rmgr, loc);
}
/* No space to add this rule */
fprintf(stderr, "rmgr: Cannot find appropriate slot to insert rule\n");
return -1;
}
static int rmgr_init(struct cmd_context *ctx, struct rmgr_ctrl *rmgr)
{
struct ethtool_rxnfc *nfccmd;
int err, i;
__u32 *rule_locs;
/* clear rule manager settings */
memset(rmgr, 0, sizeof(*rmgr));
/* request device/driver information */
err = rxclass_get_dev_info(ctx, &rmgr->n_rules, &rmgr->driver_select);
if (err < 0)
return err;
/* do not get the table if the device/driver can select locations */
if (rmgr->driver_select)
return 0;
/* alloc memory for request of location list */
nfccmd = calloc(1, sizeof(*nfccmd) + (rmgr->n_rules * sizeof(__u32)));
if (!nfccmd) {
perror("rmgr: Cannot allocate memory for"
" RX class rule locations");
return -1;
}
/* request location list */
nfccmd->cmd = ETHTOOL_GRXCLSRLALL;
nfccmd->rule_cnt = rmgr->n_rules;
err = send_ioctl(ctx, nfccmd);
if (err < 0) {
perror("rmgr: Cannot get RX class rules");
free(nfccmd);
return err;
}
/* make certain the table size is valid */
rmgr->size = nfccmd->data;
if (rmgr->size == 0 || rmgr->size < rmgr->n_rules) {
perror("rmgr: Invalid RX class rules table size");
return -1;
}
/* initialize bitmap for storage of valid locations */
rmgr->slot = calloc(1, BITS_TO_LONGS(rmgr->size) * sizeof(long));
if (!rmgr->slot) {
perror("rmgr: Cannot allocate memory for RX class rules");
return -1;
}
/* write locations to bitmap */
rule_locs = nfccmd->rule_locs;
for (i = 0; i < rmgr->n_rules; i++) {
err = rmgr_ins(rmgr, rule_locs[i]);
if (err < 0)
break;
}
free(nfccmd);
return err;
}
static void rmgr_cleanup(struct rmgr_ctrl *rmgr)
{
free(rmgr->slot);
rmgr->slot = NULL;
rmgr->size = 0;
}
static int rmgr_set_location(struct cmd_context *ctx,
struct ethtool_rx_flow_spec *fsp)
{
struct rmgr_ctrl rmgr;
int err;
/* init table of available rules */
err = rmgr_init(ctx, &rmgr);
if (err < 0)
goto out;
/* verify rule location */
err = rmgr_find_empty_slot(&rmgr, fsp);
out:
/* cleanup table and free resources */
rmgr_cleanup(&rmgr);
return err;
}
int rxclass_rule_ins(struct cmd_context *ctx,
struct ethtool_rx_flow_spec *fsp, __u32 rss_context)
{
struct ethtool_rxnfc nfccmd;
__u32 loc = fsp->location;
int err;
/*
* if location is unspecified and driver cannot select locations, pull
* rules from device and allocate a free rule for our use
*/
if (loc & RX_CLS_LOC_SPECIAL) {
err = rmgr_set_location(ctx, fsp);
if (err < 0)
return err;
}
/* notify netdev of new rule */
nfccmd.cmd = ETHTOOL_SRXCLSRLINS;
nfccmd.rss_context = rss_context;
nfccmd.fs = *fsp;
err = send_ioctl(ctx, &nfccmd);
if (err < 0)
perror("rmgr: Cannot insert RX class rule");
else if (loc & RX_CLS_LOC_SPECIAL)
printf("Added rule with ID %d\n", nfccmd.fs.location);
return 0;
}
int rxclass_rule_del(struct cmd_context *ctx, __u32 loc)
{
struct ethtool_rxnfc nfccmd;
int err;
/* notify netdev of rule removal */
nfccmd.cmd = ETHTOOL_SRXCLSRLDEL;
nfccmd.fs.location = loc;
err = send_ioctl(ctx, &nfccmd);
if (err < 0)
perror("rmgr: Cannot delete RX class rule");
return err;
}
typedef enum {
OPT_NONE = 0,
OPT_S32,
OPT_U8,
OPT_U16,
OPT_U32,
OPT_U64,
OPT_RING_VF,
OPT_RING_QUEUE,
OPT_BE16,
OPT_BE32,
OPT_BE64,
OPT_IP4,
OPT_IP6,
OPT_MAC,
} rule_opt_type_t;
#define NFC_FLAG_RING 0x0001
#define NFC_FLAG_LOC 0x0002
#define NFC_FLAG_SADDR 0x0004
#define NFC_FLAG_DADDR 0x0008
#define NFC_FLAG_SPORT 0x0010
#define NFC_FLAG_DPORT 0x0020
#define NFC_FLAG_SPI 0x0030
#define NFC_FLAG_TOS 0x0040
#define NFC_FLAG_PROTO 0x0080
#define NTUPLE_FLAG_VLAN 0x0100
#define NTUPLE_FLAG_UDEF 0x0200
#define NTUPLE_FLAG_VETH 0x0400
#define NFC_FLAG_MAC_ADDR 0x0800
#define NFC_FLAG_RING_VF 0x1000
#define NFC_FLAG_RING_QUEUE 0x2000
struct rule_opts {
const char *name;
rule_opt_type_t type;
u32 flag;
int offset;
int moffset;
};
static const struct rule_opts rule_nfc_tcp_ip4[] = {
{ "src-ip", OPT_IP4, NFC_FLAG_SADDR,
offsetof(struct ethtool_rx_flow_spec, h_u.tcp_ip4_spec.ip4src),
offsetof(struct ethtool_rx_flow_spec, m_u.tcp_ip4_spec.ip4src) },
{ "dst-ip", OPT_IP4, NFC_FLAG_DADDR,
offsetof(struct ethtool_rx_flow_spec, h_u.tcp_ip4_spec.ip4dst),
offsetof(struct ethtool_rx_flow_spec, m_u.tcp_ip4_spec.ip4dst) },
{ "tos", OPT_U8, NFC_FLAG_TOS,
offsetof(struct ethtool_rx_flow_spec, h_u.tcp_ip4_spec.tos),
offsetof(struct ethtool_rx_flow_spec, m_u.tcp_ip4_spec.tos) },
{ "src-port", OPT_BE16, NFC_FLAG_SPORT,
offsetof(struct ethtool_rx_flow_spec, h_u.tcp_ip4_spec.psrc),
offsetof(struct ethtool_rx_flow_spec, m_u.tcp_ip4_spec.psrc) },
{ "dst-port", OPT_BE16, NFC_FLAG_DPORT,
offsetof(struct ethtool_rx_flow_spec, h_u.tcp_ip4_spec.pdst),
offsetof(struct ethtool_rx_flow_spec, m_u.tcp_ip4_spec.pdst) },
{ "action", OPT_U64, NFC_FLAG_RING,
offsetof(struct ethtool_rx_flow_spec, ring_cookie), -1 },
{ "vf", OPT_RING_VF, NFC_FLAG_RING_VF,
offsetof(struct ethtool_rx_flow_spec, ring_cookie), -1 },
{ "queue", OPT_RING_QUEUE, NFC_FLAG_RING_QUEUE,
offsetof(struct ethtool_rx_flow_spec, ring_cookie), -1 },
{ "loc", OPT_U32, NFC_FLAG_LOC,
offsetof(struct ethtool_rx_flow_spec, location), -1 },
{ "vlan-etype", OPT_BE16, NTUPLE_FLAG_VETH,
offsetof(struct ethtool_rx_flow_spec, h_ext.vlan_etype),
offsetof(struct ethtool_rx_flow_spec, m_ext.vlan_etype) },
{ "vlan", OPT_BE16, NTUPLE_FLAG_VLAN,
offsetof(struct ethtool_rx_flow_spec, h_ext.vlan_tci),
offsetof(struct ethtool_rx_flow_spec, m_ext.vlan_tci) },
{ "user-def", OPT_BE64, NTUPLE_FLAG_UDEF,
offsetof(struct ethtool_rx_flow_spec, h_ext.data),
offsetof(struct ethtool_rx_flow_spec, m_ext.data) },
{ "dst-mac", OPT_MAC, NFC_FLAG_MAC_ADDR,
offsetof(struct ethtool_rx_flow_spec, h_ext.h_dest),
offsetof(struct ethtool_rx_flow_spec, m_ext.h_dest) },
};
static const struct rule_opts rule_nfc_esp_ip4[] = {
{ "src-ip", OPT_IP4, NFC_FLAG_SADDR,
offsetof(struct ethtool_rx_flow_spec, h_u.esp_ip4_spec.ip4src),
offsetof(struct ethtool_rx_flow_spec, m_u.esp_ip4_spec.ip4src) },
{ "dst-ip", OPT_IP4, NFC_FLAG_DADDR,
offsetof(struct ethtool_rx_flow_spec, h_u.esp_ip4_spec.ip4dst),
offsetof(struct ethtool_rx_flow_spec, m_u.esp_ip4_spec.ip4dst) },
{ "tos", OPT_U8, NFC_FLAG_TOS,
offsetof(struct ethtool_rx_flow_spec, h_u.esp_ip4_spec.tos),
offsetof(struct ethtool_rx_flow_spec, m_u.esp_ip4_spec.tos) },
{ "spi", OPT_BE32, NFC_FLAG_SPI,
offsetof(struct ethtool_rx_flow_spec, h_u.esp_ip4_spec.spi),
offsetof(struct ethtool_rx_flow_spec, m_u.esp_ip4_spec.spi) },
{ "action", OPT_U64, NFC_FLAG_RING,
offsetof(struct ethtool_rx_flow_spec, ring_cookie), -1 },
{ "vf", OPT_RING_VF, NFC_FLAG_RING_VF,
offsetof(struct ethtool_rx_flow_spec, ring_cookie), -1 },
{ "queue", OPT_RING_QUEUE, NFC_FLAG_RING_QUEUE,
offsetof(struct ethtool_rx_flow_spec, ring_cookie), -1 },
{ "loc", OPT_U32, NFC_FLAG_LOC,
offsetof(struct ethtool_rx_flow_spec, location), -1 },
{ "vlan-etype", OPT_BE16, NTUPLE_FLAG_VETH,
offsetof(struct ethtool_rx_flow_spec, h_ext.vlan_etype),
offsetof(struct ethtool_rx_flow_spec, m_ext.vlan_etype) },
{ "vlan", OPT_BE16, NTUPLE_FLAG_VLAN,
offsetof(struct ethtool_rx_flow_spec, h_ext.vlan_tci),
offsetof(struct ethtool_rx_flow_spec, m_ext.vlan_tci) },
{ "user-def", OPT_BE64, NTUPLE_FLAG_UDEF,
offsetof(struct ethtool_rx_flow_spec, h_ext.data),
offsetof(struct ethtool_rx_flow_spec, m_ext.data) },
{ "dst-mac", OPT_MAC, NFC_FLAG_MAC_ADDR,
offsetof(struct ethtool_rx_flow_spec, h_ext.h_dest),
offsetof(struct ethtool_rx_flow_spec, m_ext.h_dest) },
};
static const struct rule_opts rule_nfc_usr_ip4[] = {
{ "src-ip", OPT_IP4, NFC_FLAG_SADDR,
offsetof(struct ethtool_rx_flow_spec, h_u.usr_ip4_spec.ip4src),
offsetof(struct ethtool_rx_flow_spec, m_u.usr_ip4_spec.ip4src) },
{ "dst-ip", OPT_IP4, NFC_FLAG_DADDR,
offsetof(struct ethtool_rx_flow_spec, h_u.usr_ip4_spec.ip4dst),
offsetof(struct ethtool_rx_flow_spec, m_u.usr_ip4_spec.ip4dst) },
{ "tos", OPT_U8, NFC_FLAG_TOS,
offsetof(struct ethtool_rx_flow_spec, h_u.usr_ip4_spec.tos),
offsetof(struct ethtool_rx_flow_spec, m_u.usr_ip4_spec.tos) },
{ "l4proto", OPT_U8, NFC_FLAG_PROTO,
offsetof(struct ethtool_rx_flow_spec, h_u.usr_ip4_spec.proto),
offsetof(struct ethtool_rx_flow_spec, m_u.usr_ip4_spec.proto) },
{ "l4data", OPT_BE32, NFC_FLAG_SPI,
offsetof(struct ethtool_rx_flow_spec, h_u.usr_ip4_spec.l4_4_bytes),
offsetof(struct ethtool_rx_flow_spec, m_u.usr_ip4_spec.l4_4_bytes) },
{ "spi", OPT_BE32, NFC_FLAG_SPI,
offsetof(struct ethtool_rx_flow_spec, h_u.usr_ip4_spec.l4_4_bytes),
offsetof(struct ethtool_rx_flow_spec, m_u.usr_ip4_spec.l4_4_bytes) },
{ "src-port", OPT_BE16, NFC_FLAG_SPORT,
offsetof(struct ethtool_rx_flow_spec, h_u.usr_ip4_spec.l4_4_bytes),
offsetof(struct ethtool_rx_flow_spec, m_u.usr_ip4_spec.l4_4_bytes) },
{ "dst-port", OPT_BE16, NFC_FLAG_DPORT,
offsetof(struct ethtool_rx_flow_spec, h_u.usr_ip4_spec.l4_4_bytes) + 2,
offsetof(struct ethtool_rx_flow_spec, m_u.usr_ip4_spec.l4_4_bytes) + 2 },
{ "action", OPT_U64, NFC_FLAG_RING,
offsetof(struct ethtool_rx_flow_spec, ring_cookie), -1 },
{ "vf", OPT_RING_VF, NFC_FLAG_RING_VF,
offsetof(struct ethtool_rx_flow_spec, ring_cookie), -1 },
{ "queue", OPT_RING_QUEUE, NFC_FLAG_RING_QUEUE,
offsetof(struct ethtool_rx_flow_spec, ring_cookie), -1 },
{ "loc", OPT_U32, NFC_FLAG_LOC,
offsetof(struct ethtool_rx_flow_spec, location), -1 },
{ "vlan-etype", OPT_BE16, NTUPLE_FLAG_VETH,
offsetof(struct ethtool_rx_flow_spec, h_ext.vlan_etype),
offsetof(struct ethtool_rx_flow_spec, m_ext.vlan_etype) },
{ "vlan", OPT_BE16, NTUPLE_FLAG_VLAN,
offsetof(struct ethtool_rx_flow_spec, h_ext.vlan_tci),
offsetof(struct ethtool_rx_flow_spec, m_ext.vlan_tci) },
{ "user-def", OPT_BE64, NTUPLE_FLAG_UDEF,
offsetof(struct ethtool_rx_flow_spec, h_ext.data),
offsetof(struct ethtool_rx_flow_spec, m_ext.data) },
{ "dst-mac", OPT_MAC, NFC_FLAG_MAC_ADDR,
offsetof(struct ethtool_rx_flow_spec, h_ext.h_dest),
offsetof(struct ethtool_rx_flow_spec, m_ext.h_dest) },
};
static const struct rule_opts rule_nfc_tcp_ip6[] = {
{ "src-ip", OPT_IP6, NFC_FLAG_SADDR,
offsetof(struct ethtool_rx_flow_spec, h_u.tcp_ip6_spec.ip6src),
offsetof(struct ethtool_rx_flow_spec, m_u.tcp_ip6_spec.ip6src) },
{ "dst-ip", OPT_IP6, NFC_FLAG_DADDR,
offsetof(struct ethtool_rx_flow_spec, h_u.tcp_ip6_spec.ip6dst),
offsetof(struct ethtool_rx_flow_spec, m_u.tcp_ip6_spec.ip6dst) },
{ "tclass", OPT_U8, NFC_FLAG_TOS,
offsetof(struct ethtool_rx_flow_spec, h_u.tcp_ip6_spec.tclass),
offsetof(struct ethtool_rx_flow_spec, m_u.tcp_ip6_spec.tclass) },
{ "src-port", OPT_BE16, NFC_FLAG_SPORT,
offsetof(struct ethtool_rx_flow_spec, h_u.tcp_ip6_spec.psrc),
offsetof(struct ethtool_rx_flow_spec, m_u.tcp_ip6_spec.psrc) },
{ "dst-port", OPT_BE16, NFC_FLAG_DPORT,
offsetof(struct ethtool_rx_flow_spec, h_u.tcp_ip6_spec.pdst),
offsetof(struct ethtool_rx_flow_spec, m_u.tcp_ip6_spec.pdst) },
{ "action", OPT_U64, NFC_FLAG_RING,
offsetof(struct ethtool_rx_flow_spec, ring_cookie), -1 },
{ "vf", OPT_RING_VF, NFC_FLAG_RING_VF,
offsetof(struct ethtool_rx_flow_spec, ring_cookie), -1 },
{ "queue", OPT_RING_QUEUE, NFC_FLAG_RING_QUEUE,
offsetof(struct ethtool_rx_flow_spec, ring_cookie), -1 },
{ "loc", OPT_U32, NFC_FLAG_LOC,
offsetof(struct ethtool_rx_flow_spec, location), -1 },
{ "vlan-etype", OPT_BE16, NTUPLE_FLAG_VETH,
offsetof(struct ethtool_rx_flow_spec, h_ext.vlan_etype),
offsetof(struct ethtool_rx_flow_spec, m_ext.vlan_etype) },
{ "vlan", OPT_BE16, NTUPLE_FLAG_VLAN,
offsetof(struct ethtool_rx_flow_spec, h_ext.vlan_tci),
offsetof(struct ethtool_rx_flow_spec, m_ext.vlan_tci) },
{ "user-def", OPT_BE64, NTUPLE_FLAG_UDEF,
offsetof(struct ethtool_rx_flow_spec, h_ext.data),
offsetof(struct ethtool_rx_flow_spec, m_ext.data) },
{ "dst-mac", OPT_MAC, NFC_FLAG_MAC_ADDR,
offsetof(struct ethtool_rx_flow_spec, h_ext.h_dest),
offsetof(struct ethtool_rx_flow_spec, m_ext.h_dest) },
};
static const struct rule_opts rule_nfc_esp_ip6[] = {
{ "src-ip", OPT_IP6, NFC_FLAG_SADDR,
offsetof(struct ethtool_rx_flow_spec, h_u.esp_ip6_spec.ip6src),
offsetof(struct ethtool_rx_flow_spec, m_u.esp_ip6_spec.ip6src) },
{ "dst-ip", OPT_IP6, NFC_FLAG_DADDR,
offsetof(struct ethtool_rx_flow_spec, h_u.esp_ip6_spec.ip6dst),
offsetof(struct ethtool_rx_flow_spec, m_u.esp_ip6_spec.ip6dst) },
{ "tclass", OPT_U8, NFC_FLAG_TOS,
offsetof(struct ethtool_rx_flow_spec, h_u.esp_ip6_spec.tclass),
offsetof(struct ethtool_rx_flow_spec, m_u.esp_ip6_spec.tclass) },
{ "spi", OPT_BE32, NFC_FLAG_SPI,
offsetof(struct ethtool_rx_flow_spec, h_u.esp_ip6_spec.spi),
offsetof(struct ethtool_rx_flow_spec, m_u.esp_ip6_spec.spi) },
{ "action", OPT_U64, NFC_FLAG_RING,
offsetof(struct ethtool_rx_flow_spec, ring_cookie), -1 },
{ "vf", OPT_RING_VF, NFC_FLAG_RING_VF,
offsetof(struct ethtool_rx_flow_spec, ring_cookie), -1 },
{ "queue", OPT_RING_QUEUE, NFC_FLAG_RING_QUEUE,
offsetof(struct ethtool_rx_flow_spec, ring_cookie), -1 },
{ "loc", OPT_U32, NFC_FLAG_LOC,
offsetof(struct ethtool_rx_flow_spec, location), -1 },
{ "vlan-etype", OPT_BE16, NTUPLE_FLAG_VETH,
offsetof(struct ethtool_rx_flow_spec, h_ext.vlan_etype),
offsetof(struct ethtool_rx_flow_spec, m_ext.vlan_etype) },
{ "vlan", OPT_BE16, NTUPLE_FLAG_VLAN,
offsetof(struct ethtool_rx_flow_spec, h_ext.vlan_tci),
offsetof(struct ethtool_rx_flow_spec, m_ext.vlan_tci) },
{ "user-def", OPT_BE64, NTUPLE_FLAG_UDEF,
offsetof(struct ethtool_rx_flow_spec, h_ext.data),
offsetof(struct ethtool_rx_flow_spec, m_ext.data) },
{ "dst-mac", OPT_MAC, NFC_FLAG_MAC_ADDR,
offsetof(struct ethtool_rx_flow_spec, h_ext.h_dest),
offsetof(struct ethtool_rx_flow_spec, m_ext.h_dest) },
};
static const struct rule_opts rule_nfc_usr_ip6[] = {
{ "src-ip", OPT_IP6, NFC_FLAG_SADDR,
offsetof(struct ethtool_rx_flow_spec, h_u.usr_ip6_spec.ip6src),
offsetof(struct ethtool_rx_flow_spec, m_u.usr_ip6_spec.ip6src) },
{ "dst-ip", OPT_IP6, NFC_FLAG_DADDR,
offsetof(struct ethtool_rx_flow_spec, h_u.usr_ip6_spec.ip6dst),
offsetof(struct ethtool_rx_flow_spec, m_u.usr_ip6_spec.ip6dst) },
{ "tclass", OPT_U8, NFC_FLAG_TOS,
offsetof(struct ethtool_rx_flow_spec, h_u.usr_ip6_spec.tclass),
offsetof(struct ethtool_rx_flow_spec, m_u.usr_ip6_spec.tclass) },
{ "l4proto", OPT_U8, NFC_FLAG_PROTO,
offsetof(struct ethtool_rx_flow_spec, h_u.usr_ip6_spec.l4_proto),
offsetof(struct ethtool_rx_flow_spec, m_u.usr_ip6_spec.l4_proto) },
{ "l4data", OPT_BE32, NFC_FLAG_SPI,
offsetof(struct ethtool_rx_flow_spec, h_u.usr_ip6_spec.l4_4_bytes),
offsetof(struct ethtool_rx_flow_spec, m_u.usr_ip6_spec.l4_4_bytes) },
{ "spi", OPT_BE32, NFC_FLAG_SPI,
offsetof(struct ethtool_rx_flow_spec, h_u.usr_ip6_spec.l4_4_bytes),
offsetof(struct ethtool_rx_flow_spec, m_u.usr_ip6_spec.l4_4_bytes) },
{ "src-port", OPT_BE16, NFC_FLAG_SPORT,
offsetof(struct ethtool_rx_flow_spec, h_u.usr_ip6_spec.l4_4_bytes),
offsetof(struct ethtool_rx_flow_spec, m_u.usr_ip6_spec.l4_4_bytes) },
{ "dst-port", OPT_BE16, NFC_FLAG_DPORT,
offsetof(struct ethtool_rx_flow_spec, h_u.usr_ip6_spec.l4_4_bytes) + 2,
offsetof(struct ethtool_rx_flow_spec, m_u.usr_ip6_spec.l4_4_bytes) + 2 },
{ "action", OPT_U64, NFC_FLAG_RING,
offsetof(struct ethtool_rx_flow_spec, ring_cookie), -1 },
{ "vf", OPT_RING_VF, NFC_FLAG_RING_VF,
offsetof(struct ethtool_rx_flow_spec, ring_cookie), -1 },
{ "queue", OPT_RING_QUEUE, NFC_FLAG_RING_QUEUE,
offsetof(struct ethtool_rx_flow_spec, ring_cookie), -1 },
{ "loc", OPT_U32, NFC_FLAG_LOC,
offsetof(struct ethtool_rx_flow_spec, location), -1 },
{ "vlan-etype", OPT_BE16, NTUPLE_FLAG_VETH,
offsetof(struct ethtool_rx_flow_spec, h_ext.vlan_etype),
offsetof(struct ethtool_rx_flow_spec, m_ext.vlan_etype) },
{ "vlan", OPT_BE16, NTUPLE_FLAG_VLAN,
offsetof(struct ethtool_rx_flow_spec, h_ext.vlan_tci),
offsetof(struct ethtool_rx_flow_spec, m_ext.vlan_tci) },
{ "user-def", OPT_BE64, NTUPLE_FLAG_UDEF,
offsetof(struct ethtool_rx_flow_spec, h_ext.data),
offsetof(struct ethtool_rx_flow_spec, m_ext.data) },
{ "dst-mac", OPT_MAC, NFC_FLAG_MAC_ADDR,
offsetof(struct ethtool_rx_flow_spec, h_ext.h_dest),
offsetof(struct ethtool_rx_flow_spec, m_ext.h_dest) },
};
static const struct rule_opts rule_nfc_ether[] = {
{ "src", OPT_MAC, NFC_FLAG_SADDR,
offsetof(struct ethtool_rx_flow_spec, h_u.ether_spec.h_source),
offsetof(struct ethtool_rx_flow_spec, m_u.ether_spec.h_source) },
{ "dst", OPT_MAC, NFC_FLAG_DADDR,
offsetof(struct ethtool_rx_flow_spec, h_u.ether_spec.h_dest),
offsetof(struct ethtool_rx_flow_spec, m_u.ether_spec.h_dest) },
{ "proto", OPT_BE16, NFC_FLAG_PROTO,
offsetof(struct ethtool_rx_flow_spec, h_u.ether_spec.h_proto),
offsetof(struct ethtool_rx_flow_spec, m_u.ether_spec.h_proto) },
{ "action", OPT_U64, NFC_FLAG_RING,
offsetof(struct ethtool_rx_flow_spec, ring_cookie), -1 },
{ "vf", OPT_RING_VF, NFC_FLAG_RING_VF,
offsetof(struct ethtool_rx_flow_spec, ring_cookie), -1 },
{ "queue", OPT_RING_QUEUE, NFC_FLAG_RING_QUEUE,
offsetof(struct ethtool_rx_flow_spec, ring_cookie), -1 },
{ "loc", OPT_U32, NFC_FLAG_LOC,
offsetof(struct ethtool_rx_flow_spec, location), -1 },
{ "vlan-etype", OPT_BE16, NTUPLE_FLAG_VETH,
offsetof(struct ethtool_rx_flow_spec, h_ext.vlan_etype),
offsetof(struct ethtool_rx_flow_spec, m_ext.vlan_etype) },
{ "vlan", OPT_BE16, NTUPLE_FLAG_VLAN,
offsetof(struct ethtool_rx_flow_spec, h_ext.vlan_tci),
offsetof(struct ethtool_rx_flow_spec, m_ext.vlan_tci) },
{ "user-def", OPT_BE64, NTUPLE_FLAG_UDEF,
offsetof(struct ethtool_rx_flow_spec, h_ext.data),
offsetof(struct ethtool_rx_flow_spec, m_ext.data) },
};
static int rxclass_get_long(char *str, long long *val, int size)
{
long long max = ~0ULL >> (65 - size);
char *endp;
errno = 0;
*val = strtoll(str, &endp, 0);
if (*endp || errno || (*val > max) || (*val < ~max))
return -1;
return 0;
}
static int rxclass_get_ulong(char *str, unsigned long long *val, int size)
{
long long max = ~0ULL >> (64 - size);
char *endp;
errno = 0;
*val = strtoull(str, &endp, 0);
if (*endp || errno || (*val > max))
return -1;
return 0;
}
static int rxclass_get_ipv4(char *str, __be32 *val)
{
if (!inet_pton(AF_INET, str, val))
return -1;
return 0;
}
static int rxclass_get_ipv6(char *str, __be32 *val)
{
if (!inet_pton(AF_INET6, str, val))
return -1;
return 0;
}
static int rxclass_get_ether(char *str, unsigned char *val)
{
unsigned int buf[ETH_ALEN];
int count;
if (!strchr(str, ':'))
return -1;
count = sscanf(str, "%2x:%2x:%2x:%2x:%2x:%2x",
&buf[0], &buf[1], &buf[2],
&buf[3], &buf[4], &buf[5]);
if (count != ETH_ALEN)
return -1;
do {
count--;
val[count] = buf[count];
} while (count);
return 0;
}
static int rxclass_get_val(char *str, unsigned char *p, u32 *flags,
const struct rule_opts *opt)
{
unsigned long long mask = ~0ULL;
int err = 0;
if (*flags & opt->flag)
return -1;
*flags |= opt->flag;
switch (opt->type) {
case OPT_S32: {
long long val;
err = rxclass_get_long(str, &val, 32);
if (err)
return -1;
*(int *)&p[opt->offset] = (int)val;
if (opt->moffset >= 0)
*(int *)&p[opt->moffset] = (int)mask;
break;
}
case OPT_U8: {
unsigned long long val;
err = rxclass_get_ulong(str, &val, 8);
if (err)
return -1;
*(u8 *)&p[opt->offset] = (u8)val;
if (opt->moffset >= 0)
*(u8 *)&p[opt->moffset] = (u8)mask;
break;
}
case OPT_U16: {
unsigned long long val;
err = rxclass_get_ulong(str, &val, 16);
if (err)
return -1;
*(u16 *)&p[opt->offset] = (u16)val;
if (opt->moffset >= 0)
*(u16 *)&p[opt->moffset] = (u16)mask;
break;
}
case OPT_U32: {
unsigned long long val;
err = rxclass_get_ulong(str, &val, 32);
if (err)
return -1;
*(u32 *)&p[opt->offset] = (u32)val;
if (opt->moffset >= 0)
*(u32 *)&p[opt->moffset] = (u32)mask;
break;
}
case OPT_U64: {
unsigned long long val;
err = rxclass_get_ulong(str, &val, 64);
if (err)
return -1;
*(u64 *)&p[opt->offset] = (u64)val;
if (opt->moffset >= 0)
*(u64 *)&p[opt->moffset] = (u64)mask;
break;
}
case OPT_RING_VF: {
unsigned long long val;
err = rxclass_get_ulong(str, &val, 8);
if (err)
return -1;
/* The ring_cookie uses 0 to indicate the rule targets the
* main function, so add 1 to the value in order to target the
* correct virtual function.
*/
val++;
*(u64 *)&p[opt->offset] &= ~ETHTOOL_RX_FLOW_SPEC_RING_VF;
*(u64 *)&p[opt->offset] |= (u64)val << ETHTOOL_RX_FLOW_SPEC_RING_VF_OFF;
break;
}
case OPT_RING_QUEUE: {
unsigned long long val;
err = rxclass_get_ulong(str, &val, 32);
if (err)
return -1;
*(u64 *)&p[opt->offset] &= ~ETHTOOL_RX_FLOW_SPEC_RING;
*(u64 *)&p[opt->offset] |= (u64)val;
break;
}
case OPT_BE16: {
unsigned long long val;
err = rxclass_get_ulong(str, &val, 16);
if (err)
return -1;
*(__be16 *)&p[opt->offset] = htons((u16)val);
if (opt->moffset >= 0)
*(__be16 *)&p[opt->moffset] = (__be16)mask;
break;
}
case OPT_BE32: {
unsigned long long val;
err = rxclass_get_ulong(str, &val, 32);
if (err)
return -1;
*(__be32 *)&p[opt->offset] = htonl((u32)val);
if (opt->moffset >= 0)
*(__be32 *)&p[opt->moffset] = (__be32)mask;
break;
}
case OPT_BE64: {
unsigned long long val;
err = rxclass_get_ulong(str, &val, 64);
if (err)
return -1;
*(__be64 *)&p[opt->offset] = htonll((u64)val);
if (opt->moffset >= 0)
*(__be64 *)&p[opt->moffset] = (__be64)mask;
break;
}
case OPT_IP4: {
__be32 val;
err = rxclass_get_ipv4(str, &val);
if (err)
return -1;
*(__be32 *)&p[opt->offset] = val;
if (opt->moffset >= 0)
*(__be32 *)&p[opt->moffset] = (__be32)mask;
break;
}
case OPT_IP6: {
__be32 val[4];
err = rxclass_get_ipv6(str, val);
if (err)
return -1;
memcpy(&p[opt->offset], val, sizeof(val));
if (opt->moffset >= 0)
memset(&p[opt->moffset], mask, sizeof(val));
break;
}
case OPT_MAC: {
unsigned char val[ETH_ALEN];
err = rxclass_get_ether(str, val);
if (err)
return -1;
memcpy(&p[opt->offset], val, ETH_ALEN);
if (opt->moffset >= 0)
memcpy(&p[opt->moffset], &mask, ETH_ALEN);
break;
}
case OPT_NONE:
default:
return -1;
}
return 0;
}
static int rxclass_get_mask(char *str, unsigned char *p,
const struct rule_opts *opt)
{
int err = 0;
if (opt->moffset < 0)
return -1;
switch (opt->type) {
case OPT_S32: {
long long val;
err = rxclass_get_long(str, &val, 32);
if (err)
return -1;
*(int *)&p[opt->moffset] = ~(int)val;
break;
}
case OPT_U8: {
unsigned long long val;
err = rxclass_get_ulong(str, &val, 8);
if (err)
return -1;
*(u8 *)&p[opt->moffset] = ~(u8)val;
break;
}
case OPT_U16: {
unsigned long long val;
err = rxclass_get_ulong(str, &val, 16);
if (err)
return -1;
*(u16 *)&p[opt->moffset] = ~(u16)val;
break;
}
case OPT_U32: {
unsigned long long val;
err = rxclass_get_ulong(str, &val, 32);
if (err)
return -1;
*(u32 *)&p[opt->moffset] = ~(u32)val;
break;
}
case OPT_U64: {
unsigned long long val;
err = rxclass_get_ulong(str, &val, 64);
if (err)
return -1;
*(u64 *)&p[opt->moffset] = ~(u64)val;
break;
}
case OPT_BE16: {
unsigned long long val;
err = rxclass_get_ulong(str, &val, 16);
if (err)
return -1;
*(__be16 *)&p[opt->moffset] = ~htons((u16)val);
break;
}
case OPT_BE32: {
unsigned long long val;
err = rxclass_get_ulong(str, &val, 32);
if (err)
return -1;
*(__be32 *)&p[opt->moffset] = ~htonl((u32)val);
break;
}
case OPT_BE64: {
unsigned long long val;
err = rxclass_get_ulong(str, &val, 64);
if (err)
return -1;
*(__be64 *)&p[opt->moffset] = ~htonll((u64)val);
break;
}
case OPT_IP4: {
__be32 val;
err = rxclass_get_ipv4(str, &val);
if (err)
return -1;
*(__be32 *)&p[opt->moffset] = ~val;
break;
}
case OPT_IP6: {
__be32 val[4], *field;
int i;
err = rxclass_get_ipv6(str, val);
if (err)
return -1;
field = (__be32 *)&p[opt->moffset];
for (i = 0; i < 4; i++)
field[i] = ~val[i];
break;
}
case OPT_MAC: {
unsigned char val[ETH_ALEN];
int i;
err = rxclass_get_ether(str, val);
if (err)
return -1;
for (i = 0; i < ETH_ALEN; i++)
val[i] = ~val[i];
memcpy(&p[opt->moffset], val, ETH_ALEN);
break;
}
case OPT_NONE:
default:
return -1;
}
return 0;
}
int rxclass_parse_ruleopts(struct cmd_context *ctx,
struct ethtool_rx_flow_spec *fsp, __u32 *rss_context)
{
const struct rule_opts *options;
unsigned char *p = (unsigned char *)fsp;
int i = 0, n_opts, err;
u32 flags = 0;
int flow_type;
int argc = ctx->argc;
char **argp = ctx->argp;
if (argc < 1)
goto syntax_err;
if (!strcmp(argp[0], "tcp4"))
flow_type = TCP_V4_FLOW;
else if (!strcmp(argp[0], "udp4"))
flow_type = UDP_V4_FLOW;
else if (!strcmp(argp[0], "sctp4"))
flow_type = SCTP_V4_FLOW;
else if (!strcmp(argp[0], "ah4"))
flow_type = AH_V4_FLOW;
else if (!strcmp(argp[0], "esp4"))
flow_type = ESP_V4_FLOW;
else if (!strcmp(argp[0], "ip4"))
flow_type = IPV4_USER_FLOW;
else if (!strcmp(argp[0], "tcp6"))
flow_type = TCP_V6_FLOW;
else if (!strcmp(argp[0], "udp6"))
flow_type = UDP_V6_FLOW;
else if (!strcmp(argp[0], "sctp6"))
flow_type = SCTP_V6_FLOW;
else if (!strcmp(argp[0], "ah6"))
flow_type = AH_V6_FLOW;
else if (!strcmp(argp[0], "esp6"))
flow_type = ESP_V6_FLOW;
else if (!strcmp(argp[0], "ip6"))
flow_type = IPV6_USER_FLOW;
else if (!strcmp(argp[0], "ether"))
flow_type = ETHER_FLOW;
else
goto syntax_err;
switch (flow_type) {
case TCP_V4_FLOW:
case UDP_V4_FLOW:
case SCTP_V4_FLOW:
options = rule_nfc_tcp_ip4;
n_opts = ARRAY_SIZE(rule_nfc_tcp_ip4);
break;
case AH_V4_FLOW:
case ESP_V4_FLOW:
options = rule_nfc_esp_ip4;
n_opts = ARRAY_SIZE(rule_nfc_esp_ip4);
break;
case IPV4_USER_FLOW:
options = rule_nfc_usr_ip4;
n_opts = ARRAY_SIZE(rule_nfc_usr_ip4);
break;
case TCP_V6_FLOW:
case UDP_V6_FLOW:
case SCTP_V6_FLOW:
options = rule_nfc_tcp_ip6;
n_opts = ARRAY_SIZE(rule_nfc_tcp_ip6);
break;
case AH_V6_FLOW:
case ESP_V6_FLOW:
options = rule_nfc_esp_ip6;
n_opts = ARRAY_SIZE(rule_nfc_esp_ip6);
break;
case IPV6_USER_FLOW:
options = rule_nfc_usr_ip6;
n_opts = ARRAY_SIZE(rule_nfc_usr_ip6);
break;
case ETHER_FLOW:
options = rule_nfc_ether;
n_opts = ARRAY_SIZE(rule_nfc_ether);
break;
default:
fprintf(stderr, "Add rule, invalid rule type[%s]\n", argp[0]);
return -1;
}
memset(p, 0, sizeof(*fsp));
fsp->flow_type = flow_type;
fsp->location = RX_CLS_LOC_ANY;
for (i = 1; i < argc;) {
const struct rule_opts *opt;
int idx;
/* special handling for 'context %d' as it doesn't go in
* the struct ethtool_rx_flow_spec
*/
if (!strcmp(argp[i], "context")) {
unsigned long long val;
i++;
if (i >= argc) {
fprintf(stderr, "'context' missing value\n");
return -1;
}
if (rxclass_get_ulong(argp[i], &val, 32)) {
fprintf(stderr, "Invalid context value[%s]\n",
argp[i]);
return -1;
}
/* Can't use the ALLOC special value as the context ID
* of a filter to insert
*/
if ((__u32)val == ETH_RXFH_CONTEXT_ALLOC) {
fprintf(stderr, "Bad context value %x\n",
(__u32)val);
return -1;
}
*rss_context = (__u32)val;
fsp->flow_type |= FLOW_RSS;
i++;
continue;
}
for (opt = options, idx = 0; idx < n_opts; idx++, opt++) {
char mask_name[16];
if (strcmp(argp[i], opt->name))
continue;
i++;
if (i >= argc)
break;
err = rxclass_get_val(argp[i], p, &flags, opt);
if (err) {
fprintf(stderr, "Invalid %s value[%s]\n",
opt->name, argp[i]);
return -1;
}
i++;
if (i >= argc)
break;
sprintf(mask_name, "%s-mask", opt->name);
if (strcmp(argp[i], "m") && strcmp(argp[i], mask_name))
break;
i++;
if (i >= argc)
goto syntax_err;
err = rxclass_get_mask(argp[i], p, opt);
if (err) {
fprintf(stderr, "Invalid %s mask[%s]\n",
opt->name, argp[i]);
return -1;
}
i++;
break;
}
if (idx == n_opts) {
fprintf(stdout, "Add rule, unrecognized option[%s]\n",
argp[i]);
return -1;
}
}
if ((flags & NFC_FLAG_RING) && (flags & NFC_FLAG_RING_QUEUE)) {
fprintf(stderr, "action and queue are not compatible\n");
return -1;
}
if ((flags & NFC_FLAG_RING) && (flags & NFC_FLAG_RING_VF)) {
fprintf(stderr, "action and vf are not compatible\n");
return -1;
}
if (flow_type == IPV4_USER_FLOW)
fsp->h_u.usr_ip4_spec.ip_ver = ETH_RX_NFC_IP4;
if (flags & (NTUPLE_FLAG_VLAN | NTUPLE_FLAG_UDEF | NTUPLE_FLAG_VETH))
fsp->flow_type |= FLOW_EXT;
if (flags & NFC_FLAG_MAC_ADDR)
fsp->flow_type |= FLOW_MAC_EXT;
return 0;
syntax_err:
fprintf(stderr, "Add rule, invalid syntax\n");
return -1;
}