You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

992 lines
32 KiB

// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
******************************************************************************
* Copyright (C) 1997-2016, International Business Machines
* Corporation and others. All Rights Reserved.
******************************************************************************
* Date Name Description
* 03/22/00 aliu Adapted from original C++ ICU Hashtable.
* 07/06/01 aliu Modified to support int32_t keys on
* platforms with sizeof(void*) < 32.
******************************************************************************
*/
#include "uhash.h"
#include "unicode/ustring.h"
#include "cstring.h"
#include "cmemory.h"
#include "uassert.h"
#include "ustr_imp.h"
/* This hashtable is implemented as a double hash. All elements are
* stored in a single array with no secondary storage for collision
* resolution (no linked list, etc.). When there is a hash collision
* (when two unequal keys have the same hashcode) we resolve this by
* using a secondary hash. The secondary hash is an increment
* computed as a hash function (a different one) of the primary
* hashcode. This increment is added to the initial hash value to
* obtain further slots assigned to the same hash code. For this to
* work, the length of the array and the increment must be relatively
* prime. The easiest way to achieve this is to have the length of
* the array be prime, and the increment be any value from
* 1..length-1.
*
* Hashcodes are 32-bit integers. We make sure all hashcodes are
* non-negative by masking off the top bit. This has two effects: (1)
* modulo arithmetic is simplified. If we allowed negative hashcodes,
* then when we computed hashcode % length, we could get a negative
* result, which we would then have to adjust back into range. It's
* simpler to just make hashcodes non-negative. (2) It makes it easy
* to check for empty vs. occupied slots in the table. We just mark
* empty or deleted slots with a negative hashcode.
*
* The central function is _uhash_find(). This function looks for a
* slot matching the given key and hashcode. If one is found, it
* returns a pointer to that slot. If the table is full, and no match
* is found, it returns NULL -- in theory. This would make the code
* more complicated, since all callers of _uhash_find() would then
* have to check for a NULL result. To keep this from happening, we
* don't allow the table to fill. When there is only one
* empty/deleted slot left, uhash_put() will refuse to increase the
* count, and fail. This simplifies the code. In practice, one will
* seldom encounter this using default UHashtables. However, if a
* hashtable is set to a U_FIXED resize policy, or if memory is
* exhausted, then the table may fill.
*
* High and low water ratios control rehashing. They establish levels
* of fullness (from 0 to 1) outside of which the data array is
* reallocated and repopulated. Setting the low water ratio to zero
* means the table will never shrink. Setting the high water ratio to
* one means the table will never grow. The ratios should be
* coordinated with the ratio between successive elements of the
* PRIMES table, so that when the primeIndex is incremented or
* decremented during rehashing, it brings the ratio of count / length
* back into the desired range (between low and high water ratios).
*/
/********************************************************************
* PRIVATE Constants, Macros
********************************************************************/
/* This is a list of non-consecutive primes chosen such that
* PRIMES[i+1] ~ 2*PRIMES[i]. (Currently, the ratio ranges from 1.81
* to 2.18; the inverse ratio ranges from 0.459 to 0.552.) If this
* ratio is changed, the low and high water ratios should also be
* adjusted to suit.
*
* These prime numbers were also chosen so that they are the largest
* prime number while being less than a power of two.
*/
static const int32_t PRIMES[] = {
7, 13, 31, 61, 127, 251, 509, 1021, 2039, 4093, 8191, 16381, 32749,
65521, 131071, 262139, 524287, 1048573, 2097143, 4194301, 8388593,
16777213, 33554393, 67108859, 134217689, 268435399, 536870909,
1073741789, 2147483647 /*, 4294967291 */
};
#define PRIMES_LENGTH UPRV_LENGTHOF(PRIMES)
#define DEFAULT_PRIME_INDEX 4
/* These ratios are tuned to the PRIMES array such that a resize
* places the table back into the zone of non-resizing. That is,
* after a call to _uhash_rehash(), a subsequent call to
* _uhash_rehash() should do nothing (should not churn). This is only
* a potential problem with U_GROW_AND_SHRINK.
*/
static const float RESIZE_POLICY_RATIO_TABLE[6] = {
/* low, high water ratio */
0.0F, 0.5F, /* U_GROW: Grow on demand, do not shrink */
0.1F, 0.5F, /* U_GROW_AND_SHRINK: Grow and shrink on demand */
0.0F, 1.0F /* U_FIXED: Never change size */
};
/*
Invariants for hashcode values:
* DELETED < 0
* EMPTY < 0
* Real hashes >= 0
Hashcodes may not start out this way, but internally they are
adjusted so that they are always positive. We assume 32-bit
hashcodes; adjust these constants for other hashcode sizes.
*/
#define HASH_DELETED ((int32_t) 0x80000000)
#define HASH_EMPTY ((int32_t) HASH_DELETED + 1)
#define IS_EMPTY_OR_DELETED(x) ((x) < 0)
/* This macro expects a UHashTok.pointer as its keypointer and
valuepointer parameters */
#define HASH_DELETE_KEY_VALUE(hash, keypointer, valuepointer) UPRV_BLOCK_MACRO_BEGIN { \
if (hash->keyDeleter != NULL && keypointer != NULL) { \
(*hash->keyDeleter)(keypointer); \
} \
if (hash->valueDeleter != NULL && valuepointer != NULL) { \
(*hash->valueDeleter)(valuepointer); \
} \
} UPRV_BLOCK_MACRO_END
/*
* Constants for hinting whether a key or value is an integer
* or a pointer. If a hint bit is zero, then the associated
* token is assumed to be an integer.
*/
#define HINT_KEY_POINTER (1)
#define HINT_VALUE_POINTER (2)
/********************************************************************
* PRIVATE Implementation
********************************************************************/
static UHashTok
_uhash_setElement(UHashtable *hash, UHashElement* e,
int32_t hashcode,
UHashTok key, UHashTok value, int8_t hint) {
UHashTok oldValue = e->value;
if (hash->keyDeleter != NULL && e->key.pointer != NULL &&
e->key.pointer != key.pointer) { /* Avoid double deletion */
(*hash->keyDeleter)(e->key.pointer);
}
if (hash->valueDeleter != NULL) {
if (oldValue.pointer != NULL &&
oldValue.pointer != value.pointer) { /* Avoid double deletion */
(*hash->valueDeleter)(oldValue.pointer);
}
oldValue.pointer = NULL;
}
/* Compilers should copy the UHashTok union correctly, but even if
* they do, memory heap tools (e.g. BoundsChecker) can get
* confused when a pointer is cloaked in a union and then copied.
* TO ALLEVIATE THIS, we use hints (based on what API the user is
* calling) to copy pointers when we know the user thinks
* something is a pointer. */
if (hint & HINT_KEY_POINTER) {
e->key.pointer = key.pointer;
} else {
e->key = key;
}
if (hint & HINT_VALUE_POINTER) {
e->value.pointer = value.pointer;
} else {
e->value = value;
}
e->hashcode = hashcode;
return oldValue;
}
/**
* Assumes that the given element is not empty or deleted.
*/
static UHashTok
_uhash_internalRemoveElement(UHashtable *hash, UHashElement* e) {
UHashTok empty;
U_ASSERT(!IS_EMPTY_OR_DELETED(e->hashcode));
--hash->count;
empty.pointer = NULL; empty.integer = 0;
return _uhash_setElement(hash, e, HASH_DELETED, empty, empty, 0);
}
static void
_uhash_internalSetResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) {
U_ASSERT(hash != NULL);
U_ASSERT(((int32_t)policy) >= 0);
U_ASSERT(((int32_t)policy) < 3);
hash->lowWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2];
hash->highWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2 + 1];
}
/**
* Allocate internal data array of a size determined by the given
* prime index. If the index is out of range it is pinned into range.
* If the allocation fails the status is set to
* U_MEMORY_ALLOCATION_ERROR and all array storage is freed. In
* either case the previous array pointer is overwritten.
*
* Caller must ensure primeIndex is in range 0..PRIME_LENGTH-1.
*/
static void
_uhash_allocate(UHashtable *hash,
int32_t primeIndex,
UErrorCode *status) {
UHashElement *p, *limit;
UHashTok emptytok;
if (U_FAILURE(*status)) return;
U_ASSERT(primeIndex >= 0 && primeIndex < PRIMES_LENGTH);
hash->primeIndex = static_cast<int8_t>(primeIndex);
hash->length = PRIMES[primeIndex];
p = hash->elements = (UHashElement*)
uprv_malloc(sizeof(UHashElement) * hash->length);
if (hash->elements == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return;
}
emptytok.pointer = NULL; /* Only one of these two is needed */
emptytok.integer = 0; /* but we don't know which one. */
limit = p + hash->length;
while (p < limit) {
p->key = emptytok;
p->value = emptytok;
p->hashcode = HASH_EMPTY;
++p;
}
hash->count = 0;
hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio);
hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio);
}
static UHashtable*
_uhash_init(UHashtable *result,
UHashFunction *keyHash,
UKeyComparator *keyComp,
UValueComparator *valueComp,
int32_t primeIndex,
UErrorCode *status)
{
if (U_FAILURE(*status)) return NULL;
U_ASSERT(keyHash != NULL);
U_ASSERT(keyComp != NULL);
result->keyHasher = keyHash;
result->keyComparator = keyComp;
result->valueComparator = valueComp;
result->keyDeleter = NULL;
result->valueDeleter = NULL;
result->allocated = FALSE;
_uhash_internalSetResizePolicy(result, U_GROW);
_uhash_allocate(result, primeIndex, status);
if (U_FAILURE(*status)) {
return NULL;
}
return result;
}
static UHashtable*
_uhash_create(UHashFunction *keyHash,
UKeyComparator *keyComp,
UValueComparator *valueComp,
int32_t primeIndex,
UErrorCode *status) {
UHashtable *result;
if (U_FAILURE(*status)) return NULL;
result = (UHashtable*) uprv_malloc(sizeof(UHashtable));
if (result == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return NULL;
}
_uhash_init(result, keyHash, keyComp, valueComp, primeIndex, status);
result->allocated = TRUE;
if (U_FAILURE(*status)) {
uprv_free(result);
return NULL;
}
return result;
}
/**
* Look for a key in the table, or if no such key exists, the first
* empty slot matching the given hashcode. Keys are compared using
* the keyComparator function.
*
* First find the start position, which is the hashcode modulo
* the length. Test it to see if it is:
*
* a. identical: First check the hash values for a quick check,
* then compare keys for equality using keyComparator.
* b. deleted
* c. empty
*
* Stop if it is identical or empty, otherwise continue by adding a
* "jump" value (moduloing by the length again to keep it within
* range) and retesting. For efficiency, there need enough empty
* values so that the searchs stop within a reasonable amount of time.
* This can be changed by changing the high/low water marks.
*
* In theory, this function can return NULL, if it is full (no empty
* or deleted slots) and if no matching key is found. In practice, we
* prevent this elsewhere (in uhash_put) by making sure the last slot
* in the table is never filled.
*
* The size of the table should be prime for this algorithm to work;
* otherwise we are not guaranteed that the jump value (the secondary
* hash) is relatively prime to the table length.
*/
static UHashElement*
_uhash_find(const UHashtable *hash, UHashTok key,
int32_t hashcode) {
int32_t firstDeleted = -1; /* assume invalid index */
int32_t theIndex, startIndex;
int32_t jump = 0; /* lazy evaluate */
int32_t tableHash;
UHashElement *elements = hash->elements;
hashcode &= 0x7FFFFFFF; /* must be positive */
startIndex = theIndex = (hashcode ^ 0x4000000) % hash->length;
do {
tableHash = elements[theIndex].hashcode;
if (tableHash == hashcode) { /* quick check */
if ((*hash->keyComparator)(key, elements[theIndex].key)) {
return &(elements[theIndex]);
}
} else if (!IS_EMPTY_OR_DELETED(tableHash)) {
/* We have hit a slot which contains a key-value pair,
* but for which the hash code does not match. Keep
* looking.
*/
} else if (tableHash == HASH_EMPTY) { /* empty, end o' the line */
break;
} else if (firstDeleted < 0) { /* remember first deleted */
firstDeleted = theIndex;
}
if (jump == 0) { /* lazy compute jump */
/* The jump value must be relatively prime to the table
* length. As long as the length is prime, then any value
* 1..length-1 will be relatively prime to it.
*/
jump = (hashcode % (hash->length - 1)) + 1;
}
theIndex = (theIndex + jump) % hash->length;
} while (theIndex != startIndex);
if (firstDeleted >= 0) {
theIndex = firstDeleted; /* reset if had deleted slot */
} else if (tableHash != HASH_EMPTY) {
/* We get to this point if the hashtable is full (no empty or
* deleted slots), and we've failed to find a match. THIS
* WILL NEVER HAPPEN as long as uhash_put() makes sure that
* count is always < length.
*/
UPRV_UNREACHABLE;
}
return &(elements[theIndex]);
}
/**
* Attempt to grow or shrink the data arrays in order to make the
* count fit between the high and low water marks. hash_put() and
* hash_remove() call this method when the count exceeds the high or
* low water marks. This method may do nothing, if memory allocation
* fails, or if the count is already in range, or if the length is
* already at the low or high limit. In any case, upon return the
* arrays will be valid.
*/
static void
_uhash_rehash(UHashtable *hash, UErrorCode *status) {
UHashElement *old = hash->elements;
int32_t oldLength = hash->length;
int32_t newPrimeIndex = hash->primeIndex;
int32_t i;
if (hash->count > hash->highWaterMark) {
if (++newPrimeIndex >= PRIMES_LENGTH) {
return;
}
} else if (hash->count < hash->lowWaterMark) {
if (--newPrimeIndex < 0) {
return;
}
} else {
return;
}
_uhash_allocate(hash, newPrimeIndex, status);
if (U_FAILURE(*status)) {
hash->elements = old;
hash->length = oldLength;
return;
}
for (i = oldLength - 1; i >= 0; --i) {
if (!IS_EMPTY_OR_DELETED(old[i].hashcode)) {
UHashElement *e = _uhash_find(hash, old[i].key, old[i].hashcode);
U_ASSERT(e != NULL);
U_ASSERT(e->hashcode == HASH_EMPTY);
e->key = old[i].key;
e->value = old[i].value;
e->hashcode = old[i].hashcode;
++hash->count;
}
}
uprv_free(old);
}
static UHashTok
_uhash_remove(UHashtable *hash,
UHashTok key) {
/* First find the position of the key in the table. If the object
* has not been removed already, remove it. If the user wanted
* keys deleted, then delete it also. We have to put a special
* hashcode in that position that means that something has been
* deleted, since when we do a find, we have to continue PAST any
* deleted values.
*/
UHashTok result;
UHashElement* e = _uhash_find(hash, key, hash->keyHasher(key));
U_ASSERT(e != NULL);
result.pointer = NULL;
result.integer = 0;
if (!IS_EMPTY_OR_DELETED(e->hashcode)) {
result = _uhash_internalRemoveElement(hash, e);
if (hash->count < hash->lowWaterMark) {
UErrorCode status = U_ZERO_ERROR;
_uhash_rehash(hash, &status);
}
}
return result;
}
static UHashTok
_uhash_put(UHashtable *hash,
UHashTok key,
UHashTok value,
int8_t hint,
UErrorCode *status) {
/* Put finds the position in the table for the new value. If the
* key is already in the table, it is deleted, if there is a
* non-NULL keyDeleter. Then the key, the hash and the value are
* all put at the position in their respective arrays.
*/
int32_t hashcode;
UHashElement* e;
UHashTok emptytok;
if (U_FAILURE(*status)) {
goto err;
}
U_ASSERT(hash != NULL);
/* Cannot always check pointer here or iSeries sees NULL every time. */
if ((hint & HINT_VALUE_POINTER) && value.pointer == NULL) {
/* Disallow storage of NULL values, since NULL is returned by
* get() to indicate an absent key. Storing NULL == removing.
*/
return _uhash_remove(hash, key);
}
if (hash->count > hash->highWaterMark) {
_uhash_rehash(hash, status);
if (U_FAILURE(*status)) {
goto err;
}
}
hashcode = (*hash->keyHasher)(key);
e = _uhash_find(hash, key, hashcode);
U_ASSERT(e != NULL);
if (IS_EMPTY_OR_DELETED(e->hashcode)) {
/* Important: We must never actually fill the table up. If we
* do so, then _uhash_find() will return NULL, and we'll have
* to check for NULL after every call to _uhash_find(). To
* avoid this we make sure there is always at least one empty
* or deleted slot in the table. This only is a problem if we
* are out of memory and rehash isn't working.
*/
++hash->count;
if (hash->count == hash->length) {
/* Don't allow count to reach length */
--hash->count;
*status = U_MEMORY_ALLOCATION_ERROR;
goto err;
}
}
/* We must in all cases handle storage properly. If there was an
* old key, then it must be deleted (if the deleter != NULL).
* Make hashcodes stored in table positive.
*/
return _uhash_setElement(hash, e, hashcode & 0x7FFFFFFF, key, value, hint);
err:
/* If the deleters are non-NULL, this method adopts its key and/or
* value arguments, and we must be sure to delete the key and/or
* value in all cases, even upon failure.
*/
HASH_DELETE_KEY_VALUE(hash, key.pointer, value.pointer);
emptytok.pointer = NULL; emptytok.integer = 0;
return emptytok;
}
/********************************************************************
* PUBLIC API
********************************************************************/
U_CAPI UHashtable* U_EXPORT2
uhash_open(UHashFunction *keyHash,
UKeyComparator *keyComp,
UValueComparator *valueComp,
UErrorCode *status) {
return _uhash_create(keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status);
}
U_CAPI UHashtable* U_EXPORT2
uhash_openSize(UHashFunction *keyHash,
UKeyComparator *keyComp,
UValueComparator *valueComp,
int32_t size,
UErrorCode *status) {
/* Find the smallest index i for which PRIMES[i] >= size. */
int32_t i = 0;
while (i<(PRIMES_LENGTH-1) && PRIMES[i]<size) {
++i;
}
return _uhash_create(keyHash, keyComp, valueComp, i, status);
}
U_CAPI UHashtable* U_EXPORT2
uhash_init(UHashtable *fillinResult,
UHashFunction *keyHash,
UKeyComparator *keyComp,
UValueComparator *valueComp,
UErrorCode *status) {
return _uhash_init(fillinResult, keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status);
}
U_CAPI UHashtable* U_EXPORT2
uhash_initSize(UHashtable *fillinResult,
UHashFunction *keyHash,
UKeyComparator *keyComp,
UValueComparator *valueComp,
int32_t size,
UErrorCode *status) {
// Find the smallest index i for which PRIMES[i] >= size.
int32_t i = 0;
while (i<(PRIMES_LENGTH-1) && PRIMES[i]<size) {
++i;
}
return _uhash_init(fillinResult, keyHash, keyComp, valueComp, i, status);
}
U_CAPI void U_EXPORT2
uhash_close(UHashtable *hash) {
if (hash == NULL) {
return;
}
if (hash->elements != NULL) {
if (hash->keyDeleter != NULL || hash->valueDeleter != NULL) {
int32_t pos=UHASH_FIRST;
UHashElement *e;
while ((e = (UHashElement*) uhash_nextElement(hash, &pos)) != NULL) {
HASH_DELETE_KEY_VALUE(hash, e->key.pointer, e->value.pointer);
}
}
uprv_free(hash->elements);
hash->elements = NULL;
}
if (hash->allocated) {
uprv_free(hash);
}
}
U_CAPI UHashFunction *U_EXPORT2
uhash_setKeyHasher(UHashtable *hash, UHashFunction *fn) {
UHashFunction *result = hash->keyHasher;
hash->keyHasher = fn;
return result;
}
U_CAPI UKeyComparator *U_EXPORT2
uhash_setKeyComparator(UHashtable *hash, UKeyComparator *fn) {
UKeyComparator *result = hash->keyComparator;
hash->keyComparator = fn;
return result;
}
U_CAPI UValueComparator *U_EXPORT2
uhash_setValueComparator(UHashtable *hash, UValueComparator *fn){
UValueComparator *result = hash->valueComparator;
hash->valueComparator = fn;
return result;
}
U_CAPI UObjectDeleter *U_EXPORT2
uhash_setKeyDeleter(UHashtable *hash, UObjectDeleter *fn) {
UObjectDeleter *result = hash->keyDeleter;
hash->keyDeleter = fn;
return result;
}
U_CAPI UObjectDeleter *U_EXPORT2
uhash_setValueDeleter(UHashtable *hash, UObjectDeleter *fn) {
UObjectDeleter *result = hash->valueDeleter;
hash->valueDeleter = fn;
return result;
}
U_CAPI void U_EXPORT2
uhash_setResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) {
UErrorCode status = U_ZERO_ERROR;
_uhash_internalSetResizePolicy(hash, policy);
hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio);
hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio);
_uhash_rehash(hash, &status);
}
U_CAPI int32_t U_EXPORT2
uhash_count(const UHashtable *hash) {
return hash->count;
}
U_CAPI void* U_EXPORT2
uhash_get(const UHashtable *hash,
const void* key) {
UHashTok keyholder;
keyholder.pointer = (void*) key;
return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer;
}
U_CAPI void* U_EXPORT2
uhash_iget(const UHashtable *hash,
int32_t key) {
UHashTok keyholder;
keyholder.integer = key;
return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer;
}
U_CAPI int32_t U_EXPORT2
uhash_geti(const UHashtable *hash,
const void* key) {
UHashTok keyholder;
keyholder.pointer = (void*) key;
return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer;
}
U_CAPI int32_t U_EXPORT2
uhash_igeti(const UHashtable *hash,
int32_t key) {
UHashTok keyholder;
keyholder.integer = key;
return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer;
}
U_CAPI void* U_EXPORT2
uhash_put(UHashtable *hash,
void* key,
void* value,
UErrorCode *status) {
UHashTok keyholder, valueholder;
keyholder.pointer = key;
valueholder.pointer = value;
return _uhash_put(hash, keyholder, valueholder,
HINT_KEY_POINTER | HINT_VALUE_POINTER,
status).pointer;
}
U_CAPI void* U_EXPORT2
uhash_iput(UHashtable *hash,
int32_t key,
void* value,
UErrorCode *status) {
UHashTok keyholder, valueholder;
keyholder.integer = key;
valueholder.pointer = value;
return _uhash_put(hash, keyholder, valueholder,
HINT_VALUE_POINTER,
status).pointer;
}
U_CAPI int32_t U_EXPORT2
uhash_puti(UHashtable *hash,
void* key,
int32_t value,
UErrorCode *status) {
UHashTok keyholder, valueholder;
keyholder.pointer = key;
valueholder.integer = value;
return _uhash_put(hash, keyholder, valueholder,
HINT_KEY_POINTER,
status).integer;
}
U_CAPI int32_t U_EXPORT2
uhash_iputi(UHashtable *hash,
int32_t key,
int32_t value,
UErrorCode *status) {
UHashTok keyholder, valueholder;
keyholder.integer = key;
valueholder.integer = value;
return _uhash_put(hash, keyholder, valueholder,
0, /* neither is a ptr */
status).integer;
}
U_CAPI void* U_EXPORT2
uhash_remove(UHashtable *hash,
const void* key) {
UHashTok keyholder;
keyholder.pointer = (void*) key;
return _uhash_remove(hash, keyholder).pointer;
}
U_CAPI void* U_EXPORT2
uhash_iremove(UHashtable *hash,
int32_t key) {
UHashTok keyholder;
keyholder.integer = key;
return _uhash_remove(hash, keyholder).pointer;
}
U_CAPI int32_t U_EXPORT2
uhash_removei(UHashtable *hash,
const void* key) {
UHashTok keyholder;
keyholder.pointer = (void*) key;
return _uhash_remove(hash, keyholder).integer;
}
U_CAPI int32_t U_EXPORT2
uhash_iremovei(UHashtable *hash,
int32_t key) {
UHashTok keyholder;
keyholder.integer = key;
return _uhash_remove(hash, keyholder).integer;
}
U_CAPI void U_EXPORT2
uhash_removeAll(UHashtable *hash) {
int32_t pos = UHASH_FIRST;
const UHashElement *e;
U_ASSERT(hash != NULL);
if (hash->count != 0) {
while ((e = uhash_nextElement(hash, &pos)) != NULL) {
uhash_removeElement(hash, e);
}
}
U_ASSERT(hash->count == 0);
}
U_CAPI const UHashElement* U_EXPORT2
uhash_find(const UHashtable *hash, const void* key) {
UHashTok keyholder;
const UHashElement *e;
keyholder.pointer = (void*) key;
e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder));
return IS_EMPTY_OR_DELETED(e->hashcode) ? NULL : e;
}
U_CAPI const UHashElement* U_EXPORT2
uhash_nextElement(const UHashtable *hash, int32_t *pos) {
/* Walk through the array until we find an element that is not
* EMPTY and not DELETED.
*/
int32_t i;
U_ASSERT(hash != NULL);
for (i = *pos + 1; i < hash->length; ++i) {
if (!IS_EMPTY_OR_DELETED(hash->elements[i].hashcode)) {
*pos = i;
return &(hash->elements[i]);
}
}
/* No more elements */
return NULL;
}
U_CAPI void* U_EXPORT2
uhash_removeElement(UHashtable *hash, const UHashElement* e) {
U_ASSERT(hash != NULL);
U_ASSERT(e != NULL);
if (!IS_EMPTY_OR_DELETED(e->hashcode)) {
UHashElement *nce = (UHashElement *)e;
return _uhash_internalRemoveElement(hash, nce).pointer;
}
return NULL;
}
/********************************************************************
* UHashTok convenience
********************************************************************/
/**
* Return a UHashTok for an integer.
*/
/*U_CAPI UHashTok U_EXPORT2
uhash_toki(int32_t i) {
UHashTok tok;
tok.integer = i;
return tok;
}*/
/**
* Return a UHashTok for a pointer.
*/
/*U_CAPI UHashTok U_EXPORT2
uhash_tokp(void* p) {
UHashTok tok;
tok.pointer = p;
return tok;
}*/
/********************************************************************
* PUBLIC Key Hash Functions
********************************************************************/
U_CAPI int32_t U_EXPORT2
uhash_hashUChars(const UHashTok key) {
const UChar *s = (const UChar *)key.pointer;
return s == NULL ? 0 : ustr_hashUCharsN(s, u_strlen(s));
}
U_CAPI int32_t U_EXPORT2
uhash_hashChars(const UHashTok key) {
const char *s = (const char *)key.pointer;
return s == NULL ? 0 : static_cast<int32_t>(ustr_hashCharsN(s, static_cast<int32_t>(uprv_strlen(s))));
}
U_CAPI int32_t U_EXPORT2
uhash_hashIChars(const UHashTok key) {
const char *s = (const char *)key.pointer;
return s == NULL ? 0 : ustr_hashICharsN(s, static_cast<int32_t>(uprv_strlen(s)));
}
U_CAPI UBool U_EXPORT2
uhash_equals(const UHashtable* hash1, const UHashtable* hash2){
int32_t count1, count2, pos, i;
if(hash1==hash2){
return TRUE;
}
/*
* Make sure that we are comparing 2 valid hashes of the same type
* with valid comparison functions.
* Without valid comparison functions, a binary comparison
* of the hash values will yield random results on machines
* with 64-bit pointers and 32-bit integer hashes.
* A valueComparator is normally optional.
*/
if (hash1==NULL || hash2==NULL ||
hash1->keyComparator != hash2->keyComparator ||
hash1->valueComparator != hash2->valueComparator ||
hash1->valueComparator == NULL)
{
/*
Normally we would return an error here about incompatible hash tables,
but we return FALSE instead.
*/
return FALSE;
}
count1 = uhash_count(hash1);
count2 = uhash_count(hash2);
if(count1!=count2){
return FALSE;
}
pos=UHASH_FIRST;
for(i=0; i<count1; i++){
const UHashElement* elem1 = uhash_nextElement(hash1, &pos);
const UHashTok key1 = elem1->key;
const UHashTok val1 = elem1->value;
/* here the keys are not compared, instead the key form hash1 is used to fetch
* value from hash2. If the hashes are equal then then both hashes should
* contain equal values for the same key!
*/
const UHashElement* elem2 = _uhash_find(hash2, key1, hash2->keyHasher(key1));
const UHashTok val2 = elem2->value;
if(hash1->valueComparator(val1, val2)==FALSE){
return FALSE;
}
}
return TRUE;
}
/********************************************************************
* PUBLIC Comparator Functions
********************************************************************/
U_CAPI UBool U_EXPORT2
uhash_compareUChars(const UHashTok key1, const UHashTok key2) {
const UChar *p1 = (const UChar*) key1.pointer;
const UChar *p2 = (const UChar*) key2.pointer;
if (p1 == p2) {
return TRUE;
}
if (p1 == NULL || p2 == NULL) {
return FALSE;
}
while (*p1 != 0 && *p1 == *p2) {
++p1;
++p2;
}
return (UBool)(*p1 == *p2);
}
U_CAPI UBool U_EXPORT2
uhash_compareChars(const UHashTok key1, const UHashTok key2) {
const char *p1 = (const char*) key1.pointer;
const char *p2 = (const char*) key2.pointer;
if (p1 == p2) {
return TRUE;
}
if (p1 == NULL || p2 == NULL) {
return FALSE;
}
while (*p1 != 0 && *p1 == *p2) {
++p1;
++p2;
}
return (UBool)(*p1 == *p2);
}
U_CAPI UBool U_EXPORT2
uhash_compareIChars(const UHashTok key1, const UHashTok key2) {
const char *p1 = (const char*) key1.pointer;
const char *p2 = (const char*) key2.pointer;
if (p1 == p2) {
return TRUE;
}
if (p1 == NULL || p2 == NULL) {
return FALSE;
}
while (*p1 != 0 && uprv_tolower(*p1) == uprv_tolower(*p2)) {
++p1;
++p2;
}
return (UBool)(*p1 == *p2);
}
/********************************************************************
* PUBLIC int32_t Support Functions
********************************************************************/
U_CAPI int32_t U_EXPORT2
uhash_hashLong(const UHashTok key) {
return key.integer;
}
U_CAPI UBool U_EXPORT2
uhash_compareLong(const UHashTok key1, const UHashTok key2) {
return (UBool)(key1.integer == key2.integer);
}