You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
178 lines
5.4 KiB
178 lines
5.4 KiB
#!/usr/bin/python3
|
|
|
|
from __future__ import print_function
|
|
|
|
from keras.models import Sequential
|
|
from keras.models import Model
|
|
from keras.layers import Input
|
|
from keras.layers import Dense
|
|
from keras.layers import LSTM
|
|
from keras.layers import GRU
|
|
from keras.layers import CuDNNGRU
|
|
from keras.layers import SimpleRNN
|
|
from keras.layers import Dropout
|
|
from keras import losses
|
|
import h5py
|
|
from keras.optimizers import Adam
|
|
|
|
from keras.constraints import Constraint
|
|
from keras import backend as K
|
|
import numpy as np
|
|
|
|
import tensorflow as tf
|
|
from keras.backend.tensorflow_backend import set_session
|
|
config = tf.ConfigProto()
|
|
config.gpu_options.per_process_gpu_memory_fraction = 0.44
|
|
set_session(tf.Session(config=config))
|
|
|
|
def binary_crossentrop2(y_true, y_pred):
|
|
return K.mean(2*K.abs(y_true-0.5) * K.binary_crossentropy(y_true, y_pred), axis=-1)
|
|
|
|
def binary_accuracy2(y_true, y_pred):
|
|
return K.mean(K.cast(K.equal(y_true, K.round(y_pred)), 'float32') + K.cast(K.equal(y_true, 0.5), 'float32'), axis=-1)
|
|
|
|
def quant_model(model):
|
|
weights = model.get_weights()
|
|
for k in range(len(weights)):
|
|
weights[k] = np.maximum(-128, np.minimum(127, np.round(128*weights[k])*0.0078125))
|
|
model.set_weights(weights)
|
|
|
|
class WeightClip(Constraint):
|
|
'''Clips the weights incident to each hidden unit to be inside a range
|
|
'''
|
|
def __init__(self, c=2):
|
|
self.c = c
|
|
|
|
def __call__(self, p):
|
|
return K.clip(p, -self.c, self.c)
|
|
|
|
def get_config(self):
|
|
return {'name': self.__class__.__name__,
|
|
'c': self.c}
|
|
|
|
reg = 0.000001
|
|
constraint = WeightClip(.998)
|
|
|
|
print('Build model...')
|
|
|
|
main_input = Input(shape=(None, 25), name='main_input')
|
|
x = Dense(32, activation='tanh', kernel_constraint=constraint, bias_constraint=constraint)(main_input)
|
|
#x = CuDNNGRU(24, return_sequences=True, kernel_constraint=constraint, recurrent_constraint=constraint, bias_constraint=constraint)(x)
|
|
x = GRU(24, recurrent_activation='sigmoid', activation='tanh', return_sequences=True, kernel_constraint=constraint, recurrent_constraint=constraint, bias_constraint=constraint)(x)
|
|
x = Dense(2, activation='sigmoid', kernel_constraint=constraint, bias_constraint=constraint)(x)
|
|
model = Model(inputs=main_input, outputs=x)
|
|
|
|
batch_size = 2048
|
|
|
|
print('Loading data...')
|
|
with h5py.File('features10b.h5', 'r') as hf:
|
|
all_data = hf['data'][:]
|
|
print('done.')
|
|
|
|
window_size = 1500
|
|
|
|
nb_sequences = len(all_data)//window_size
|
|
print(nb_sequences, ' sequences')
|
|
x_train = all_data[:nb_sequences*window_size, :-2]
|
|
x_train = np.reshape(x_train, (nb_sequences, window_size, 25))
|
|
|
|
y_train = np.copy(all_data[:nb_sequences*window_size, -2:])
|
|
y_train = np.reshape(y_train, (nb_sequences, window_size, 2))
|
|
|
|
print("Marking ignores")
|
|
for s in y_train:
|
|
for e in s:
|
|
if (e[1] >= 1):
|
|
break
|
|
e[0] = 0.5
|
|
|
|
all_data = 0;
|
|
x_train = x_train.astype('float32')
|
|
y_train = y_train.astype('float32')
|
|
|
|
print(len(x_train), 'train sequences. x shape =', x_train.shape, 'y shape = ', y_train.shape)
|
|
|
|
model.load_weights('newweights10a1b_ep206.hdf5')
|
|
|
|
#weights = model.get_weights()
|
|
#for k in range(len(weights)):
|
|
# weights[k] = np.round(128*weights[k])*0.0078125
|
|
#model.set_weights(weights)
|
|
|
|
# try using different optimizers and different optimizer configs
|
|
model.compile(loss=binary_crossentrop2,
|
|
optimizer=Adam(0.0001),
|
|
metrics=[binary_accuracy2])
|
|
|
|
print('Train...')
|
|
quant_model(model)
|
|
model.fit(x_train, y_train,
|
|
batch_size=batch_size,
|
|
epochs=10, validation_data=(x_train, y_train))
|
|
model.save("newweights10a1c_ep10.hdf5")
|
|
|
|
quant_model(model)
|
|
model.fit(x_train, y_train,
|
|
batch_size=batch_size,
|
|
epochs=50, initial_epoch=10)
|
|
model.save("newweights10a1c_ep50.hdf5")
|
|
|
|
model.compile(loss=binary_crossentrop2,
|
|
optimizer=Adam(0.0001),
|
|
metrics=[binary_accuracy2])
|
|
|
|
quant_model(model)
|
|
model.fit(x_train, y_train,
|
|
batch_size=batch_size,
|
|
epochs=100, initial_epoch=50)
|
|
model.save("newweights10a1c_ep100.hdf5")
|
|
|
|
quant_model(model)
|
|
model.fit(x_train, y_train,
|
|
batch_size=batch_size,
|
|
epochs=150, initial_epoch=100)
|
|
model.save("newweights10a1c_ep150.hdf5")
|
|
|
|
quant_model(model)
|
|
model.fit(x_train, y_train,
|
|
batch_size=batch_size,
|
|
epochs=200, initial_epoch=150)
|
|
model.save("newweights10a1c_ep200.hdf5")
|
|
|
|
quant_model(model)
|
|
model.fit(x_train, y_train,
|
|
batch_size=batch_size,
|
|
epochs=201, initial_epoch=200)
|
|
model.save("newweights10a1c_ep201.hdf5")
|
|
|
|
quant_model(model)
|
|
model.fit(x_train, y_train,
|
|
batch_size=batch_size,
|
|
epochs=202, initial_epoch=201, validation_data=(x_train, y_train))
|
|
model.save("newweights10a1c_ep202.hdf5")
|
|
|
|
quant_model(model)
|
|
model.fit(x_train, y_train,
|
|
batch_size=batch_size,
|
|
epochs=203, initial_epoch=202, validation_data=(x_train, y_train))
|
|
model.save("newweights10a1c_ep203.hdf5")
|
|
|
|
quant_model(model)
|
|
model.fit(x_train, y_train,
|
|
batch_size=batch_size,
|
|
epochs=204, initial_epoch=203, validation_data=(x_train, y_train))
|
|
model.save("newweights10a1c_ep204.hdf5")
|
|
|
|
quant_model(model)
|
|
model.fit(x_train, y_train,
|
|
batch_size=batch_size,
|
|
epochs=205, initial_epoch=204, validation_data=(x_train, y_train))
|
|
model.save("newweights10a1c_ep205.hdf5")
|
|
|
|
quant_model(model)
|
|
model.fit(x_train, y_train,
|
|
batch_size=batch_size,
|
|
epochs=206, initial_epoch=205, validation_data=(x_train, y_train))
|
|
model.save("newweights10a1c_ep206.hdf5")
|
|
|