You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

707 lines
15 KiB

// Copyright (c) 2012 The WebM project authors. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the LICENSE file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
#include "webvttparser.h"
#include <ctype.h>
#include <climits>
#include <cstddef>
namespace libwebvtt {
// NOLINT'ing this enum because clang-format puts it in a single line which
// makes it look really unreadable.
enum {
kNUL = '\x00',
kSPACE = ' ',
kTAB = '\x09',
kLF = '\x0A',
kCR = '\x0D'
}; // NOLINT
Reader::~Reader() {}
LineReader::~LineReader() {}
int LineReader::GetLine(std::string* line_ptr) {
if (line_ptr == NULL)
return -1;
std::string& ln = *line_ptr;
ln.clear();
// Consume characters from the stream, until we
// reach end-of-line (or end-of-stream).
// The WebVTT spec states that lines may be
// terminated in any of these three ways:
// LF
// CR
// CR LF
// We interrogate each character as we read it from the stream.
// If we detect an end-of-line character, we consume the full
// end-of-line indication, and we're done; otherwise, accumulate
// the character and repeat.
for (;;) {
char c;
const int e = GetChar(&c);
if (e < 0) // error
return e;
if (e > 0) // EOF
return (ln.empty()) ? 1 : 0;
// We have a character, so we must first determine
// whether we have reached end-of-line.
if (c == kLF)
return 0; // handle the easy end-of-line case immediately
if (c == kCR)
break; // handle the hard end-of-line case outside of loop
if (c == '\xFE' || c == '\xFF') // not UTF-8
return -1;
// To defend against pathological or malicious streams, we
// cap the line length at some arbitrarily-large value:
enum { kMaxLineLength = 10000 }; // arbitrary
if (ln.length() >= kMaxLineLength)
return -1;
// We don't have an end-of-line character, so accumulate
// the character in our line buffer.
ln.push_back(c);
}
// We detected a CR. We must interrogate the next character
// in the stream, to determine whether we have a LF (which
// would make it part of this same line).
char c;
const int e = GetChar(&c);
if (e < 0) // error
return e;
if (e > 0) // EOF
return 0;
// If next character in the stream is not a LF, return it
// to the stream (because it's part of the next line).
if (c != kLF)
UngetChar(c);
return 0;
}
Parser::Parser(Reader* r) : reader_(r), unget_(-1) {}
Parser::~Parser() {}
int Parser::Init() {
int e = ParseBOM();
if (e < 0) // error
return e;
if (e > 0) // EOF
return -1;
// Parse "WEBVTT". We read from the stream one character at-a-time, in
// order to defend against non-WebVTT streams (e.g. binary files) that don't
// happen to comprise lines of text demarcated with line terminators.
const char kId[] = "WEBVTT";
for (const char* p = kId; *p; ++p) {
char c;
e = GetChar(&c);
if (e < 0) // error
return e;
if (e > 0) // EOF
return -1;
if (c != *p)
return -1;
}
std::string line;
e = GetLine(&line);
if (e < 0) // error
return e;
if (e > 0) // EOF
return 0; // weird but valid
if (!line.empty()) {
// Parse optional characters that follow "WEBVTT"
const char c = line[0];
if (c != kSPACE && c != kTAB)
return -1;
}
// The WebVTT spec requires that the "WEBVTT" line
// be followed by an empty line (to separate it from
// first cue).
e = GetLine(&line);
if (e < 0) // error
return e;
if (e > 0) // EOF
return 0; // weird but we allow it
if (!line.empty())
return -1;
return 0; // success
}
int Parser::Parse(Cue* cue) {
if (cue == NULL)
return -1;
// Parse first non-blank line
std::string line;
int e;
for (;;) {
e = GetLine(&line);
if (e) // EOF is OK here
return e;
if (!line.empty())
break;
}
// A WebVTT cue comprises an optional cue identifier line followed
// by a (non-optional) timings line. You determine whether you have
// a timings line by scanning for the arrow token, the lexeme of which
// may not appear in the cue identifier line.
const char kArrow[] = "-->";
std::string::size_type arrow_pos = line.find(kArrow);
if (arrow_pos != std::string::npos) {
// We found a timings line, which implies that we don't have a cue
// identifier.
cue->identifier.clear();
} else {
// We did not find a timings line, so we assume that we have a cue
// identifier line, and then try again to find the cue timings on
// the next line.
cue->identifier.swap(line);
e = GetLine(&line);
if (e < 0) // error
return e;
if (e > 0) // EOF
return -1;
arrow_pos = line.find(kArrow);
if (arrow_pos == std::string::npos) // not a timings line
return -1;
}
e = ParseTimingsLine(&line, arrow_pos, &cue->start_time, &cue->stop_time,
&cue->settings);
if (e) // error
return e;
// The cue payload comprises all the non-empty
// lines that follow the timings line.
Cue::payload_t& p = cue->payload;
p.clear();
for (;;) {
e = GetLine(&line);
if (e < 0) // error
return e;
if (line.empty())
break;
p.push_back(line);
}
if (p.empty())
return -1;
return 0; // success
}
int Parser::GetChar(char* c) {
if (unget_ >= 0) {
*c = static_cast<char>(unget_);
unget_ = -1;
return 0;
}
return reader_->GetChar(c);
}
void Parser::UngetChar(char c) { unget_ = static_cast<unsigned char>(c); }
int Parser::ParseBOM() {
// Explanation of UTF-8 BOM:
// http://en.wikipedia.org/wiki/Byte_order_mark
static const char BOM[] = "\xEF\xBB\xBF"; // UTF-8 BOM
for (int i = 0; i < 3; ++i) {
char c;
int e = GetChar(&c);
if (e < 0) // error
return e;
if (e > 0) // EOF
return 1;
if (c != BOM[i]) {
if (i == 0) { // we don't have a BOM
UngetChar(c);
return 0; // success
}
// We started a BOM, so we must finish the BOM.
return -1; // error
}
}
return 0; // success
}
int Parser::ParseTimingsLine(std::string* line_ptr,
std::string::size_type arrow_pos, Time* start_time,
Time* stop_time, Cue::settings_t* settings) {
if (line_ptr == NULL)
return -1;
std::string& line = *line_ptr;
if (arrow_pos == std::string::npos || arrow_pos >= line.length())
return -1;
// Place a NUL character at the start of the arrow token, in
// order to demarcate the start time from remainder of line.
line[arrow_pos] = kNUL;
std::string::size_type idx = 0;
int e = ParseTime(line, &idx, start_time);
if (e) // error
return e;
// Detect any junk that follows the start time,
// but precedes the arrow symbol.
while (char c = line[idx]) {
if (c != kSPACE && c != kTAB)
return -1;
++idx;
}
// Place a NUL character at the end of the line,
// so the scanner has a place to stop, and begin
// the scan just beyond the arrow token.
line.push_back(kNUL);
idx = arrow_pos + 3;
e = ParseTime(line, &idx, stop_time);
if (e) // error
return e;
e = ParseSettings(line, idx, settings);
if (e) // error
return e;
return 0; // success
}
int Parser::ParseTime(const std::string& line, std::string::size_type* idx_ptr,
Time* time) {
if (idx_ptr == NULL)
return -1;
std::string::size_type& idx = *idx_ptr;
if (idx == std::string::npos || idx >= line.length())
return -1;
if (time == NULL)
return -1;
// Consume any whitespace that precedes the timestamp.
while (char c = line[idx]) {
if (c != kSPACE && c != kTAB)
break;
++idx;
}
// WebVTT timestamp syntax comes in three flavors:
// SS[.sss]
// MM:SS[.sss]
// HH:MM:SS[.sss]
// Parse a generic number value. We don't know which component
// of the time we have yet, until we do more parsing.
int val = ParseNumber(line, &idx);
if (val < 0) // error
return val;
Time& t = *time;
// The presence of a colon character indicates that we have
// an [HH:]MM:SS style syntax.
if (line[idx] == ':') {
// We have either HH:MM:SS or MM:SS
// The value we just parsed is either the hours or minutes.
// It must be followed by another number value (that is
// either minutes or seconds).
const int first_val = val;
++idx; // consume colon
// Parse second value
val = ParseNumber(line, &idx);
if (val < 0)
return val;
if (val >= 60) // either MM or SS
return -1;
if (line[idx] == ':') {
// We have HH:MM:SS
t.hours = first_val;
t.minutes = val; // vetted above
++idx; // consume MM:SS colon
// We have parsed the hours and minutes.
// We must now parse the seconds.
val = ParseNumber(line, &idx);
if (val < 0)
return val;
if (val >= 60) // SS part of HH:MM:SS
return -1;
t.seconds = val;
} else {
// We have MM:SS
// The implication here is that the hour value was omitted
// from the timestamp (because it was 0).
if (first_val >= 60) // minutes
return -1;
t.hours = 0;
t.minutes = first_val;
t.seconds = val; // vetted above
}
} else {
// We have SS (only)
// The time is expressed as total number of seconds,
// so the seconds value has no upper bound.
t.seconds = val;
// Convert SS to HH:MM:SS
t.minutes = t.seconds / 60;
t.seconds -= t.minutes * 60;
t.hours = t.minutes / 60;
t.minutes -= t.hours * 60;
}
// We have parsed the hours, minutes, and seconds.
// We must now parse the milliseconds.
char c = line[idx];
// TODO(matthewjheaney): one option here is to slightly relax the
// syntax rules for WebVTT timestamps, to permit the comma character
// to also be used as the seconds/milliseconds separator. This
// would handle streams that use localization conventions for
// countries in Western Europe. For now we obey the rules specified
// in the WebVTT spec (allow "full stop" only).
const bool have_milliseconds = (c == '.');
if (!have_milliseconds) {
t.milliseconds = 0;
} else {
++idx; // consume FULL STOP
val = ParseNumber(line, &idx);
if (val < 0)
return val;
if (val >= 1000)
return -1;
if (val < 10)
t.milliseconds = val * 100;
else if (val < 100)
t.milliseconds = val * 10;
else
t.milliseconds = val;
}
// We have parsed the time proper. We must check for any
// junk that immediately follows the time specifier.
c = line[idx];
if (c != kNUL && c != kSPACE && c != kTAB)
return -1;
return 0; // success
}
int Parser::ParseSettings(const std::string& line, std::string::size_type idx,
Cue::settings_t* settings) {
settings->clear();
if (idx == std::string::npos || idx >= line.length())
return -1;
for (;;) {
// We must parse a line comprising a sequence of 0 or more
// NAME:VALUE pairs, separated by whitespace. The line iself is
// terminated with a NUL char (indicating end-of-line).
for (;;) {
const char c = line[idx];
if (c == kNUL) // end-of-line
return 0; // success
if (c != kSPACE && c != kTAB)
break;
++idx; // consume whitespace
}
// We have consumed the whitespace, and have not yet reached
// end-of-line, so there is something on the line for us to parse.
settings->push_back(Setting());
Setting& s = settings->back();
// Parse the NAME part of the settings pair.
for (;;) {
const char c = line[idx];
if (c == ':') // we have reached end of NAME part
break;
if (c == kNUL || c == kSPACE || c == kTAB)
return -1;
s.name.push_back(c);
++idx;
}
if (s.name.empty())
return -1;
++idx; // consume colon
// Parse the VALUE part of the settings pair.
for (;;) {
const char c = line[idx];
if (c == kNUL || c == kSPACE || c == kTAB)
break;
if (c == ':') // suspicious when part of VALUE
return -1; // TODO(matthewjheaney): verify this behavior
s.value.push_back(c);
++idx;
}
if (s.value.empty())
return -1;
}
}
int Parser::ParseNumber(const std::string& line,
std::string::size_type* idx_ptr) {
if (idx_ptr == NULL)
return -1;
std::string::size_type& idx = *idx_ptr;
if (idx == std::string::npos || idx >= line.length())
return -1;
if (!isdigit(line[idx]))
return -1;
int result = 0;
while (isdigit(line[idx])) {
const char c = line[idx];
const int i = c - '0';
if (result > INT_MAX / 10)
return -1;
result *= 10;
if (result > INT_MAX - i)
return -1;
result += i;
++idx;
}
return result;
}
bool Time::operator==(const Time& rhs) const {
if (hours != rhs.hours)
return false;
if (minutes != rhs.minutes)
return false;
if (seconds != rhs.seconds)
return false;
return (milliseconds == rhs.milliseconds);
}
bool Time::operator<(const Time& rhs) const {
if (hours < rhs.hours)
return true;
if (hours > rhs.hours)
return false;
if (minutes < rhs.minutes)
return true;
if (minutes > rhs.minutes)
return false;
if (seconds < rhs.seconds)
return true;
if (seconds > rhs.seconds)
return false;
return (milliseconds < rhs.milliseconds);
}
bool Time::operator>(const Time& rhs) const { return rhs.operator<(*this); }
bool Time::operator<=(const Time& rhs) const { return !this->operator>(rhs); }
bool Time::operator>=(const Time& rhs) const { return !this->operator<(rhs); }
presentation_t Time::presentation() const {
const presentation_t h = 1000LL * 3600LL * presentation_t(hours);
const presentation_t m = 1000LL * 60LL * presentation_t(minutes);
const presentation_t s = 1000LL * presentation_t(seconds);
const presentation_t result = h + m + s + milliseconds;
return result;
}
Time& Time::presentation(presentation_t d) {
if (d < 0) { // error
hours = 0;
minutes = 0;
seconds = 0;
milliseconds = 0;
return *this;
}
seconds = static_cast<int>(d / 1000);
milliseconds = static_cast<int>(d - 1000 * seconds);
minutes = seconds / 60;
seconds -= 60 * minutes;
hours = minutes / 60;
minutes -= 60 * hours;
return *this;
}
Time& Time::operator+=(presentation_t rhs) {
const presentation_t d = this->presentation();
const presentation_t dd = d + rhs;
this->presentation(dd);
return *this;
}
Time Time::operator+(presentation_t d) const {
Time t(*this);
t += d;
return t;
}
Time& Time::operator-=(presentation_t d) { return this->operator+=(-d); }
presentation_t Time::operator-(const Time& t) const {
const presentation_t rhs = t.presentation();
const presentation_t lhs = this->presentation();
const presentation_t result = lhs - rhs;
return result;
}
} // namespace libwebvtt