You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1594 lines
57 KiB

//===-- DynamicLoaderDarwinKernel.cpp -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Plugins/Platform/MacOSX/PlatformDarwinKernel.h"
#include "lldb/Breakpoint/StoppointCallbackContext.h"
#include "lldb/Core/Debugger.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/ModuleSpec.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/Section.h"
#include "lldb/Core/StreamFile.h"
#include "lldb/Interpreter/OptionValueProperties.h"
#include "lldb/Symbol/LocateSymbolFile.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Target/OperatingSystem.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/StackFrame.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "lldb/Target/ThreadPlanRunToAddress.h"
#include "lldb/Utility/DataBuffer.h"
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/State.h"
#include "DynamicLoaderDarwinKernel.h"
#include <algorithm>
#include <memory>
//#define ENABLE_DEBUG_PRINTF // COMMENT THIS LINE OUT PRIOR TO CHECKIN
#ifdef ENABLE_DEBUG_PRINTF
#include <stdio.h>
#define DEBUG_PRINTF(fmt, ...) printf(fmt, ##__VA_ARGS__)
#else
#define DEBUG_PRINTF(fmt, ...)
#endif
using namespace lldb;
using namespace lldb_private;
LLDB_PLUGIN_DEFINE(DynamicLoaderDarwinKernel)
// Progressively greater amounts of scanning we will allow For some targets
// very early in startup, we can't do any random reads of memory or we can
// crash the device so a setting is needed that can completely disable the
// KASLR scans.
enum KASLRScanType {
eKASLRScanNone = 0, // No reading into the inferior at all
eKASLRScanLowgloAddresses, // Check one word of memory for a possible kernel
// addr, then see if a kernel is there
eKASLRScanNearPC, // Scan backwards from the current $pc looking for kernel;
// checking at 96 locations total
eKASLRScanExhaustiveScan // Scan through the entire possible kernel address
// range looking for a kernel
};
static constexpr OptionEnumValueElement g_kaslr_kernel_scan_enum_values[] = {
{
eKASLRScanNone,
"none",
"Do not read memory looking for a Darwin kernel when attaching.",
},
{
eKASLRScanLowgloAddresses,
"basic",
"Check for the Darwin kernel's load addr in the lowglo page "
"(boot-args=debug) only.",
},
{
eKASLRScanNearPC,
"fast-scan",
"Scan near the pc value on attach to find the Darwin kernel's load "
"address.",
},
{
eKASLRScanExhaustiveScan,
"exhaustive-scan",
"Scan through the entire potential address range of Darwin kernel "
"(only on 32-bit targets).",
},
};
#define LLDB_PROPERTIES_dynamicloaderdarwinkernel
#include "DynamicLoaderDarwinKernelProperties.inc"
enum {
#define LLDB_PROPERTIES_dynamicloaderdarwinkernel
#include "DynamicLoaderDarwinKernelPropertiesEnum.inc"
};
class DynamicLoaderDarwinKernelProperties : public Properties {
public:
static ConstString &GetSettingName() {
static ConstString g_setting_name("darwin-kernel");
return g_setting_name;
}
DynamicLoaderDarwinKernelProperties() : Properties() {
m_collection_sp = std::make_shared<OptionValueProperties>(GetSettingName());
m_collection_sp->Initialize(g_dynamicloaderdarwinkernel_properties);
}
~DynamicLoaderDarwinKernelProperties() override {}
bool GetLoadKexts() const {
const uint32_t idx = ePropertyLoadKexts;
return m_collection_sp->GetPropertyAtIndexAsBoolean(
nullptr, idx,
g_dynamicloaderdarwinkernel_properties[idx].default_uint_value != 0);
}
KASLRScanType GetScanType() const {
const uint32_t idx = ePropertyScanType;
return (KASLRScanType)m_collection_sp->GetPropertyAtIndexAsEnumeration(
nullptr, idx,
g_dynamicloaderdarwinkernel_properties[idx].default_uint_value);
}
};
typedef std::shared_ptr<DynamicLoaderDarwinKernelProperties>
DynamicLoaderDarwinKernelPropertiesSP;
static const DynamicLoaderDarwinKernelPropertiesSP &GetGlobalProperties() {
static DynamicLoaderDarwinKernelPropertiesSP g_settings_sp;
if (!g_settings_sp)
g_settings_sp = std::make_shared<DynamicLoaderDarwinKernelProperties>();
return g_settings_sp;
}
// Create an instance of this class. This function is filled into the plugin
// info class that gets handed out by the plugin factory and allows the lldb to
// instantiate an instance of this class.
DynamicLoader *DynamicLoaderDarwinKernel::CreateInstance(Process *process,
bool force) {
if (!force) {
// If the user provided an executable binary and it is not a kernel, this
// plugin should not create an instance.
Module *exe_module = process->GetTarget().GetExecutableModulePointer();
if (exe_module) {
ObjectFile *object_file = exe_module->GetObjectFile();
if (object_file) {
if (object_file->GetStrata() != ObjectFile::eStrataKernel) {
return nullptr;
}
}
}
// If the target's architecture does not look like an Apple environment,
// this plugin should not create an instance.
const llvm::Triple &triple_ref =
process->GetTarget().GetArchitecture().GetTriple();
switch (triple_ref.getOS()) {
case llvm::Triple::Darwin:
case llvm::Triple::MacOSX:
case llvm::Triple::IOS:
case llvm::Triple::TvOS:
case llvm::Triple::WatchOS:
// NEED_BRIDGEOS_TRIPLE case llvm::Triple::BridgeOS:
if (triple_ref.getVendor() != llvm::Triple::Apple) {
return nullptr;
}
break;
// If we have triple like armv7-unknown-unknown, we should try looking for
// a Darwin kernel.
case llvm::Triple::UnknownOS:
break;
default:
return nullptr;
break;
}
}
// At this point if there is an ExecutableModule, it is a kernel and the
// Target is some variant of an Apple system. If the Process hasn't provided
// the kernel load address, we need to look around in memory to find it.
const addr_t kernel_load_address = SearchForDarwinKernel(process);
if (CheckForKernelImageAtAddress(kernel_load_address, process).IsValid()) {
process->SetCanRunCode(false);
return new DynamicLoaderDarwinKernel(process, kernel_load_address);
}
return nullptr;
}
lldb::addr_t
DynamicLoaderDarwinKernel::SearchForDarwinKernel(Process *process) {
addr_t kernel_load_address = process->GetImageInfoAddress();
if (kernel_load_address == LLDB_INVALID_ADDRESS) {
kernel_load_address = SearchForKernelAtSameLoadAddr(process);
if (kernel_load_address == LLDB_INVALID_ADDRESS) {
kernel_load_address = SearchForKernelWithDebugHints(process);
if (kernel_load_address == LLDB_INVALID_ADDRESS) {
kernel_load_address = SearchForKernelNearPC(process);
if (kernel_load_address == LLDB_INVALID_ADDRESS) {
kernel_load_address = SearchForKernelViaExhaustiveSearch(process);
}
}
}
}
return kernel_load_address;
}
// Check if the kernel binary is loaded in memory without a slide. First verify
// that the ExecutableModule is a kernel before we proceed. Returns the address
// of the kernel if one was found, else LLDB_INVALID_ADDRESS.
lldb::addr_t
DynamicLoaderDarwinKernel::SearchForKernelAtSameLoadAddr(Process *process) {
Module *exe_module = process->GetTarget().GetExecutableModulePointer();
if (exe_module == nullptr)
return LLDB_INVALID_ADDRESS;
ObjectFile *exe_objfile = exe_module->GetObjectFile();
if (exe_objfile == nullptr)
return LLDB_INVALID_ADDRESS;
if (exe_objfile->GetType() != ObjectFile::eTypeExecutable ||
exe_objfile->GetStrata() != ObjectFile::eStrataKernel)
return LLDB_INVALID_ADDRESS;
if (!exe_objfile->GetBaseAddress().IsValid())
return LLDB_INVALID_ADDRESS;
if (CheckForKernelImageAtAddress(
exe_objfile->GetBaseAddress().GetFileAddress(), process) ==
exe_module->GetUUID())
return exe_objfile->GetBaseAddress().GetFileAddress();
return LLDB_INVALID_ADDRESS;
}
// If the debug flag is included in the boot-args nvram setting, the kernel's
// load address will be noted in the lowglo page at a fixed address Returns the
// address of the kernel if one was found, else LLDB_INVALID_ADDRESS.
lldb::addr_t
DynamicLoaderDarwinKernel::SearchForKernelWithDebugHints(Process *process) {
if (GetGlobalProperties()->GetScanType() == eKASLRScanNone)
return LLDB_INVALID_ADDRESS;
Status read_err;
addr_t kernel_addresses_64[] = {
0xfffffff000002010ULL,
0xfffffff000004010ULL, // newest arm64 devices
0xffffff8000004010ULL, // 2014-2015-ish arm64 devices
0xffffff8000002010ULL, // oldest arm64 devices
LLDB_INVALID_ADDRESS};
addr_t kernel_addresses_32[] = {0xffff0110, // 2016 and earlier armv7 devices
0xffff1010, LLDB_INVALID_ADDRESS};
uint8_t uval[8];
if (process->GetAddressByteSize() == 8) {
for (size_t i = 0; kernel_addresses_64[i] != LLDB_INVALID_ADDRESS; i++) {
if (process->ReadMemoryFromInferior (kernel_addresses_64[i], uval, 8, read_err) == 8)
{
DataExtractor data (&uval, 8, process->GetByteOrder(), process->GetAddressByteSize());
offset_t offset = 0;
uint64_t addr = data.GetU64 (&offset);
if (CheckForKernelImageAtAddress(addr, process).IsValid()) {
return addr;
}
}
}
}
if (process->GetAddressByteSize() == 4) {
for (size_t i = 0; kernel_addresses_32[i] != LLDB_INVALID_ADDRESS; i++) {
if (process->ReadMemoryFromInferior (kernel_addresses_32[i], uval, 4, read_err) == 4)
{
DataExtractor data (&uval, 4, process->GetByteOrder(), process->GetAddressByteSize());
offset_t offset = 0;
uint32_t addr = data.GetU32 (&offset);
if (CheckForKernelImageAtAddress(addr, process).IsValid()) {
return addr;
}
}
}
}
return LLDB_INVALID_ADDRESS;
}
// If the kernel is currently executing when lldb attaches, and we don't have a
// better way of finding the kernel's load address, try searching backwards
// from the current pc value looking for the kernel's Mach header in memory.
// Returns the address of the kernel if one was found, else
// LLDB_INVALID_ADDRESS.
lldb::addr_t
DynamicLoaderDarwinKernel::SearchForKernelNearPC(Process *process) {
if (GetGlobalProperties()->GetScanType() == eKASLRScanNone ||
GetGlobalProperties()->GetScanType() == eKASLRScanLowgloAddresses) {
return LLDB_INVALID_ADDRESS;
}
ThreadSP thread = process->GetThreadList().GetSelectedThread();
if (thread.get() == nullptr)
return LLDB_INVALID_ADDRESS;
addr_t pc = thread->GetRegisterContext()->GetPC(LLDB_INVALID_ADDRESS);
int ptrsize = process->GetTarget().GetArchitecture().GetAddressByteSize();
// The kernel is always loaded in high memory, if the top bit is zero,
// this isn't a kernel.
if (ptrsize == 8) {
if ((pc & (1ULL << 63)) == 0) {
return LLDB_INVALID_ADDRESS;
}
} else {
if ((pc & (1ULL << 31)) == 0) {
return LLDB_INVALID_ADDRESS;
}
}
if (pc == LLDB_INVALID_ADDRESS)
return LLDB_INVALID_ADDRESS;
int pagesize = 0x4000; // 16k pages on 64-bit targets
if (ptrsize == 4)
pagesize = 0x1000; // 4k pages on 32-bit targets
// The kernel will be loaded on a page boundary.
// Round the current pc down to the nearest page boundary.
addr_t addr = pc & ~(pagesize - 1ULL);
// Search backwards for 32 megabytes, or first memory read error.
while (pc - addr < 32 * 0x100000) {
bool read_error;
if (CheckForKernelImageAtAddress(addr, process, &read_error).IsValid())
return addr;
// Stop scanning on the first read error we encounter; we've walked
// past this executable block of memory.
if (read_error == true)
break;
addr -= pagesize;
}
return LLDB_INVALID_ADDRESS;
}
// Scan through the valid address range for a kernel binary. This is uselessly
// slow in 64-bit environments so we don't even try it. This scan is not
// enabled by default even for 32-bit targets. Returns the address of the
// kernel if one was found, else LLDB_INVALID_ADDRESS.
lldb::addr_t DynamicLoaderDarwinKernel::SearchForKernelViaExhaustiveSearch(
Process *process) {
if (GetGlobalProperties()->GetScanType() != eKASLRScanExhaustiveScan) {
return LLDB_INVALID_ADDRESS;
}
addr_t kernel_range_low, kernel_range_high;
if (process->GetTarget().GetArchitecture().GetAddressByteSize() == 8) {
kernel_range_low = 1ULL << 63;
kernel_range_high = UINT64_MAX;
} else {
kernel_range_low = 1ULL << 31;
kernel_range_high = UINT32_MAX;
}
// Stepping through memory at one-megabyte resolution looking for a kernel
// rarely works (fast enough) with a 64-bit address space -- for now, let's
// not even bother. We may be attaching to something which *isn't* a kernel
// and we don't want to spin for minutes on-end looking for a kernel.
if (process->GetTarget().GetArchitecture().GetAddressByteSize() == 8)
return LLDB_INVALID_ADDRESS;
addr_t addr = kernel_range_low;
while (addr >= kernel_range_low && addr < kernel_range_high) {
// x86_64 kernels are at offset 0
if (CheckForKernelImageAtAddress(addr, process).IsValid())
return addr;
// 32-bit arm kernels are at offset 0x1000 (one 4k page)
if (CheckForKernelImageAtAddress(addr + 0x1000, process).IsValid())
return addr + 0x1000;
// 64-bit arm kernels are at offset 0x4000 (one 16k page)
if (CheckForKernelImageAtAddress(addr + 0x4000, process).IsValid())
return addr + 0x4000;
addr += 0x100000;
}
return LLDB_INVALID_ADDRESS;
}
// Read the mach_header struct out of memory and return it.
// Returns true if the mach_header was successfully read,
// Returns false if there was a problem reading the header, or it was not
// a Mach-O header.
bool
DynamicLoaderDarwinKernel::ReadMachHeader(addr_t addr, Process *process, llvm::MachO::mach_header &header,
bool *read_error) {
Status error;
if (read_error)
*read_error = false;
// Read the mach header and see whether it looks like a kernel
if (process->DoReadMemory (addr, &header, sizeof(header), error) !=
sizeof(header)) {
if (read_error)
*read_error = true;
return false;
}
const uint32_t magicks[] = { llvm::MachO::MH_MAGIC_64, llvm::MachO::MH_MAGIC, llvm::MachO::MH_CIGAM, llvm::MachO::MH_CIGAM_64};
bool found_matching_pattern = false;
for (size_t i = 0; i < llvm::array_lengthof (magicks); i++)
if (::memcmp (&header.magic, &magicks[i], sizeof (uint32_t)) == 0)
found_matching_pattern = true;
if (!found_matching_pattern)
return false;
if (header.magic == llvm::MachO::MH_CIGAM ||
header.magic == llvm::MachO::MH_CIGAM_64) {
header.magic = llvm::ByteSwap_32(header.magic);
header.cputype = llvm::ByteSwap_32(header.cputype);
header.cpusubtype = llvm::ByteSwap_32(header.cpusubtype);
header.filetype = llvm::ByteSwap_32(header.filetype);
header.ncmds = llvm::ByteSwap_32(header.ncmds);
header.sizeofcmds = llvm::ByteSwap_32(header.sizeofcmds);
header.flags = llvm::ByteSwap_32(header.flags);
}
return true;
}
// Given an address in memory, look to see if there is a kernel image at that
// address.
// Returns a UUID; if a kernel was not found at that address, UUID.IsValid()
// will be false.
lldb_private::UUID
DynamicLoaderDarwinKernel::CheckForKernelImageAtAddress(lldb::addr_t addr,
Process *process,
bool *read_error) {
Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_DYNAMIC_LOADER));
if (addr == LLDB_INVALID_ADDRESS) {
if (read_error)
*read_error = true;
return UUID();
}
LLDB_LOGF(log,
"DynamicLoaderDarwinKernel::CheckForKernelImageAtAddress: "
"looking for kernel binary at 0x%" PRIx64,
addr);
llvm::MachO::mach_header header;
if (!ReadMachHeader(addr, process, header, read_error))
return UUID();
// First try a quick test -- read the first 4 bytes and see if there is a
// valid Mach-O magic field there
// (the first field of the mach_header/mach_header_64 struct).
// A kernel is an executable which does not have the dynamic link object flag
// set.
if (header.filetype == llvm::MachO::MH_EXECUTE &&
(header.flags & llvm::MachO::MH_DYLDLINK) == 0) {
// Create a full module to get the UUID
ModuleSP memory_module_sp =
process->ReadModuleFromMemory(FileSpec("temp_mach_kernel"), addr);
if (!memory_module_sp.get())
return UUID();
ObjectFile *exe_objfile = memory_module_sp->GetObjectFile();
if (exe_objfile == nullptr) {
LLDB_LOGF(log,
"DynamicLoaderDarwinKernel::CheckForKernelImageAtAddress "
"found a binary at 0x%" PRIx64
" but could not create an object file from memory",
addr);
return UUID();
}
if (exe_objfile->GetType() == ObjectFile::eTypeExecutable &&
exe_objfile->GetStrata() == ObjectFile::eStrataKernel) {
ArchSpec kernel_arch(eArchTypeMachO, header.cputype, header.cpusubtype);
if (!process->GetTarget().GetArchitecture().IsCompatibleMatch(
kernel_arch)) {
process->GetTarget().SetArchitecture(kernel_arch);
}
if (log) {
std::string uuid_str;
if (memory_module_sp->GetUUID().IsValid()) {
uuid_str = "with UUID ";
uuid_str += memory_module_sp->GetUUID().GetAsString();
} else {
uuid_str = "and no LC_UUID found in load commands ";
}
LLDB_LOGF(
log,
"DynamicLoaderDarwinKernel::CheckForKernelImageAtAddress: "
"kernel binary image found at 0x%" PRIx64 " with arch '%s' %s",
addr, kernel_arch.GetTriple().str().c_str(), uuid_str.c_str());
}
return memory_module_sp->GetUUID();
}
}
return UUID();
}
// Constructor
DynamicLoaderDarwinKernel::DynamicLoaderDarwinKernel(Process *process,
lldb::addr_t kernel_addr)
: DynamicLoader(process), m_kernel_load_address(kernel_addr), m_kernel(),
m_kext_summary_header_ptr_addr(), m_kext_summary_header_addr(),
m_kext_summary_header(), m_known_kexts(), m_mutex(),
m_break_id(LLDB_INVALID_BREAK_ID) {
Status error;
PlatformSP platform_sp(
Platform::Create(PlatformDarwinKernel::GetPluginNameStatic(), error));
if (platform_sp.get())
process->GetTarget().SetPlatform(platform_sp);
}
// Destructor
DynamicLoaderDarwinKernel::~DynamicLoaderDarwinKernel() { Clear(true); }
void DynamicLoaderDarwinKernel::UpdateIfNeeded() {
LoadKernelModuleIfNeeded();
SetNotificationBreakpointIfNeeded();
}
/// Called after attaching a process.
///
/// Allow DynamicLoader plug-ins to execute some code after
/// attaching to a process.
void DynamicLoaderDarwinKernel::DidAttach() {
PrivateInitialize(m_process);
UpdateIfNeeded();
}
/// Called after attaching a process.
///
/// Allow DynamicLoader plug-ins to execute some code after
/// attaching to a process.
void DynamicLoaderDarwinKernel::DidLaunch() {
PrivateInitialize(m_process);
UpdateIfNeeded();
}
// Clear out the state of this class.
void DynamicLoaderDarwinKernel::Clear(bool clear_process) {
std::lock_guard<std::recursive_mutex> guard(m_mutex);
if (m_process->IsAlive() && LLDB_BREAK_ID_IS_VALID(m_break_id))
m_process->ClearBreakpointSiteByID(m_break_id);
if (clear_process)
m_process = nullptr;
m_kernel.Clear();
m_known_kexts.clear();
m_kext_summary_header_ptr_addr.Clear();
m_kext_summary_header_addr.Clear();
m_break_id = LLDB_INVALID_BREAK_ID;
}
bool DynamicLoaderDarwinKernel::KextImageInfo::LoadImageAtFileAddress(
Process *process) {
if (IsLoaded())
return true;
if (m_module_sp) {
bool changed = false;
if (m_module_sp->SetLoadAddress(process->GetTarget(), 0, true, changed))
m_load_process_stop_id = process->GetStopID();
}
return false;
}
void DynamicLoaderDarwinKernel::KextImageInfo::SetModule(ModuleSP module_sp) {
m_module_sp = module_sp;
if (module_sp.get() && module_sp->GetObjectFile()) {
if (module_sp->GetObjectFile()->GetType() == ObjectFile::eTypeExecutable &&
module_sp->GetObjectFile()->GetStrata() == ObjectFile::eStrataKernel) {
m_kernel_image = true;
} else {
m_kernel_image = false;
}
}
}
ModuleSP DynamicLoaderDarwinKernel::KextImageInfo::GetModule() {
return m_module_sp;
}
void DynamicLoaderDarwinKernel::KextImageInfo::SetLoadAddress(
addr_t load_addr) {
m_load_address = load_addr;
}
addr_t DynamicLoaderDarwinKernel::KextImageInfo::GetLoadAddress() const {
return m_load_address;
}
uint64_t DynamicLoaderDarwinKernel::KextImageInfo::GetSize() const {
return m_size;
}
void DynamicLoaderDarwinKernel::KextImageInfo::SetSize(uint64_t size) {
m_size = size;
}
uint32_t DynamicLoaderDarwinKernel::KextImageInfo::GetProcessStopId() const {
return m_load_process_stop_id;
}
void DynamicLoaderDarwinKernel::KextImageInfo::SetProcessStopId(
uint32_t stop_id) {
m_load_process_stop_id = stop_id;
}
bool DynamicLoaderDarwinKernel::KextImageInfo::
operator==(const KextImageInfo &rhs) {
if (m_uuid.IsValid() || rhs.GetUUID().IsValid()) {
return m_uuid == rhs.GetUUID();
}
return m_name == rhs.GetName() && m_load_address == rhs.GetLoadAddress();
}
void DynamicLoaderDarwinKernel::KextImageInfo::SetName(const char *name) {
m_name = name;
}
std::string DynamicLoaderDarwinKernel::KextImageInfo::GetName() const {
return m_name;
}
void DynamicLoaderDarwinKernel::KextImageInfo::SetUUID(const UUID &uuid) {
m_uuid = uuid;
}
UUID DynamicLoaderDarwinKernel::KextImageInfo::GetUUID() const {
return m_uuid;
}
// Given the m_load_address from the kext summaries, and a UUID, try to create
// an in-memory Module at that address. Require that the MemoryModule have a
// matching UUID and detect if this MemoryModule is a kernel or a kext.
//
// Returns true if m_memory_module_sp is now set to a valid Module.
bool DynamicLoaderDarwinKernel::KextImageInfo::ReadMemoryModule(
Process *process) {
Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST);
if (m_memory_module_sp.get() != nullptr)
return true;
if (m_load_address == LLDB_INVALID_ADDRESS)
return false;
FileSpec file_spec(m_name.c_str());
llvm::MachO::mach_header mh;
size_t size_to_read = 512;
if (ReadMachHeader(m_load_address, process, mh)) {
if (mh.magic == llvm::MachO::MH_CIGAM || mh.magic == llvm::MachO::MH_MAGIC)
size_to_read = sizeof(llvm::MachO::mach_header) + mh.sizeofcmds;
if (mh.magic == llvm::MachO::MH_CIGAM_64 ||
mh.magic == llvm::MachO::MH_MAGIC_64)
size_to_read = sizeof(llvm::MachO::mach_header_64) + mh.sizeofcmds;
}
ModuleSP memory_module_sp =
process->ReadModuleFromMemory(file_spec, m_load_address, size_to_read);
if (memory_module_sp.get() == nullptr)
return false;
bool is_kernel = false;
if (memory_module_sp->GetObjectFile()) {
if (memory_module_sp->GetObjectFile()->GetType() ==
ObjectFile::eTypeExecutable &&
memory_module_sp->GetObjectFile()->GetStrata() ==
ObjectFile::eStrataKernel) {
is_kernel = true;
} else if (memory_module_sp->GetObjectFile()->GetType() ==
ObjectFile::eTypeSharedLibrary) {
is_kernel = false;
}
}
// If this is a kext, and the kernel specified what UUID we should find at
// this load address, require that the memory module have a matching UUID or
// something has gone wrong and we should discard it.
if (m_uuid.IsValid()) {
if (m_uuid != memory_module_sp->GetUUID()) {
if (log) {
LLDB_LOGF(log,
"KextImageInfo::ReadMemoryModule the kernel said to find "
"uuid %s at 0x%" PRIx64
" but instead we found uuid %s, throwing it away",
m_uuid.GetAsString().c_str(), m_load_address,
memory_module_sp->GetUUID().GetAsString().c_str());
}
return false;
}
}
// If the in-memory Module has a UUID, let's use that.
if (!m_uuid.IsValid() && memory_module_sp->GetUUID().IsValid()) {
m_uuid = memory_module_sp->GetUUID();
}
m_memory_module_sp = memory_module_sp;
m_kernel_image = is_kernel;
if (is_kernel) {
if (log) {
// This is unusual and probably not intended
LLDB_LOGF(log,
"KextImageInfo::ReadMemoryModule read the kernel binary out "
"of memory");
}
if (memory_module_sp->GetArchitecture().IsValid()) {
process->GetTarget().SetArchitecture(memory_module_sp->GetArchitecture());
}
if (m_uuid.IsValid()) {
ModuleSP exe_module_sp = process->GetTarget().GetExecutableModule();
if (exe_module_sp.get() && exe_module_sp->GetUUID().IsValid()) {
if (m_uuid != exe_module_sp->GetUUID()) {
// The user specified a kernel binary that has a different UUID than
// the kernel actually running in memory. This never ends well;
// clear the user specified kernel binary from the Target.
m_module_sp.reset();
ModuleList user_specified_kernel_list;
user_specified_kernel_list.Append(exe_module_sp);
process->GetTarget().GetImages().Remove(user_specified_kernel_list);
}
}
}
}
return true;
}
bool DynamicLoaderDarwinKernel::KextImageInfo::IsKernel() const {
return m_kernel_image;
}
void DynamicLoaderDarwinKernel::KextImageInfo::SetIsKernel(bool is_kernel) {
m_kernel_image = is_kernel;
}
bool DynamicLoaderDarwinKernel::KextImageInfo::LoadImageUsingMemoryModule(
Process *process) {
if (IsLoaded())
return true;
Target &target = process->GetTarget();
// kexts will have a uuid from the table.
// for the kernel, we'll need to read the load commands out of memory to get it.
if (m_uuid.IsValid() == false) {
if (ReadMemoryModule(process) == false) {
Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_DYNAMIC_LOADER));
LLDB_LOGF(log,
"Unable to read '%s' from memory at address 0x%" PRIx64
" to get the segment load addresses.",
m_name.c_str(), m_load_address);
return false;
}
}
if (IsKernel() && m_uuid.IsValid()) {
Stream &s = target.GetDebugger().GetOutputStream();
s.Printf("Kernel UUID: %s\n", m_uuid.GetAsString().c_str());
s.Printf("Load Address: 0x%" PRIx64 "\n", m_load_address);
}
if (!m_module_sp) {
// See if the kext has already been loaded into the target, probably by the
// user doing target modules add.
const ModuleList &target_images = target.GetImages();
m_module_sp = target_images.FindModule(m_uuid);
// Search for the kext on the local filesystem via the UUID
if (!m_module_sp && m_uuid.IsValid()) {
ModuleSpec module_spec;
module_spec.GetUUID() = m_uuid;
module_spec.GetArchitecture() = target.GetArchitecture();
// For the kernel, we really do need an on-disk file copy of the binary
// to do anything useful. This will force a call to dsymForUUID if it
// exists, instead of depending on the DebugSymbols preferences being
// set.
if (IsKernel()) {
if (Symbols::DownloadObjectAndSymbolFile(module_spec, true)) {
if (FileSystem::Instance().Exists(module_spec.GetFileSpec())) {
m_module_sp = std::make_shared<Module>(module_spec.GetFileSpec(),
target.GetArchitecture());
}
}
}
// If the current platform is PlatformDarwinKernel, create a ModuleSpec
// with the filename set to be the bundle ID for this kext, e.g.
// "com.apple.filesystems.msdosfs", and ask the platform to find it.
// PlatformDarwinKernel does a special scan for kexts on the local
// system.
PlatformSP platform_sp(target.GetPlatform());
if (!m_module_sp && platform_sp) {
ConstString platform_name(platform_sp->GetPluginName());
static ConstString g_platform_name(
PlatformDarwinKernel::GetPluginNameStatic());
if (platform_name == g_platform_name) {
ModuleSpec kext_bundle_module_spec(module_spec);
FileSpec kext_filespec(m_name.c_str());
FileSpecList search_paths = target.GetExecutableSearchPaths();
kext_bundle_module_spec.GetFileSpec() = kext_filespec;
platform_sp->GetSharedModule(kext_bundle_module_spec, process,
m_module_sp, &search_paths, nullptr,
nullptr);
}
}
// Ask the Target to find this file on the local system, if possible.
// This will search in the list of currently-loaded files, look in the
// standard search paths on the system, and on a Mac it will try calling
// the DebugSymbols framework with the UUID to find the binary via its
// search methods.
if (!m_module_sp) {
m_module_sp = target.GetOrCreateModule(module_spec, true /* notify */);
}
if (IsKernel() && !m_module_sp) {
Stream &s = target.GetDebugger().GetOutputStream();
s.Printf("WARNING: Unable to locate kernel binary on the debugger "
"system.\n");
}
}
// If we managed to find a module, append it to the target's list of
// images. If we also have a memory module, require that they have matching
// UUIDs
if (m_module_sp) {
if (m_uuid.IsValid() && m_module_sp->GetUUID() == m_uuid) {
target.GetImages().AppendIfNeeded(m_module_sp, false);
if (IsKernel() &&
target.GetExecutableModulePointer() != m_module_sp.get()) {
target.SetExecutableModule(m_module_sp, eLoadDependentsNo);
}
}
}
}
// If we've found a binary, read the load commands out of memory so we
// can set the segment load addresses.
if (m_module_sp)
ReadMemoryModule (process);
static ConstString g_section_name_LINKEDIT("__LINKEDIT");
if (m_memory_module_sp && m_module_sp) {
if (m_module_sp->GetUUID() == m_memory_module_sp->GetUUID()) {
ObjectFile *ondisk_object_file = m_module_sp->GetObjectFile();
ObjectFile *memory_object_file = m_memory_module_sp->GetObjectFile();
if (memory_object_file && ondisk_object_file) {
// The memory_module for kexts may have an invalid __LINKEDIT seg; skip
// it.
const bool ignore_linkedit = !IsKernel();
SectionList *ondisk_section_list = ondisk_object_file->GetSectionList();
SectionList *memory_section_list = memory_object_file->GetSectionList();
if (memory_section_list && ondisk_section_list) {
const uint32_t num_ondisk_sections = ondisk_section_list->GetSize();
// There may be CTF sections in the memory image so we can't always
// just compare the number of sections (which are actually segments
// in mach-o parlance)
uint32_t sect_idx = 0;
// Use the memory_module's addresses for each section to set the file
// module's load address as appropriate. We don't want to use a
// single slide value for the entire kext - different segments may be
// slid different amounts by the kext loader.
uint32_t num_sections_loaded = 0;
for (sect_idx = 0; sect_idx < num_ondisk_sections; ++sect_idx) {
SectionSP ondisk_section_sp(
ondisk_section_list->GetSectionAtIndex(sect_idx));
if (ondisk_section_sp) {
// Don't ever load __LINKEDIT as it may or may not be actually
// mapped into memory and there is no current way to tell.
// I filed rdar://problem/12851706 to track being able to tell
// if the __LINKEDIT is actually mapped, but until then, we need
// to not load the __LINKEDIT
if (ignore_linkedit &&
ondisk_section_sp->GetName() == g_section_name_LINKEDIT)
continue;
const Section *memory_section =
memory_section_list
->FindSectionByName(ondisk_section_sp->GetName())
.get();
if (memory_section) {
target.SetSectionLoadAddress(ondisk_section_sp,
memory_section->GetFileAddress());
++num_sections_loaded;
}
}
}
if (num_sections_loaded > 0)
m_load_process_stop_id = process->GetStopID();
else
m_module_sp.reset(); // No sections were loaded
} else
m_module_sp.reset(); // One or both section lists
} else
m_module_sp.reset(); // One or both object files missing
} else
m_module_sp.reset(); // UUID mismatch
}
bool is_loaded = IsLoaded();
if (is_loaded && m_module_sp && IsKernel()) {
Stream &s = target.GetDebugger().GetOutputStream();
ObjectFile *kernel_object_file = m_module_sp->GetObjectFile();
if (kernel_object_file) {
addr_t file_address =
kernel_object_file->GetBaseAddress().GetFileAddress();
if (m_load_address != LLDB_INVALID_ADDRESS &&
file_address != LLDB_INVALID_ADDRESS) {
s.Printf("Kernel slid 0x%" PRIx64 " in memory.\n",
m_load_address - file_address);
}
}
{
s.Printf("Loaded kernel file %s\n",
m_module_sp->GetFileSpec().GetPath().c_str());
}
s.Flush();
}
// Notify the target about the module being added;
// set breakpoints, load dSYM scripts, etc. as needed.
if (is_loaded && m_module_sp) {
ModuleList loaded_module_list;
loaded_module_list.Append(m_module_sp);
target.ModulesDidLoad(loaded_module_list);
}
return is_loaded;
}
uint32_t DynamicLoaderDarwinKernel::KextImageInfo::GetAddressByteSize() {
if (m_memory_module_sp)
return m_memory_module_sp->GetArchitecture().GetAddressByteSize();
if (m_module_sp)
return m_module_sp->GetArchitecture().GetAddressByteSize();
return 0;
}
lldb::ByteOrder DynamicLoaderDarwinKernel::KextImageInfo::GetByteOrder() {
if (m_memory_module_sp)
return m_memory_module_sp->GetArchitecture().GetByteOrder();
if (m_module_sp)
return m_module_sp->GetArchitecture().GetByteOrder();
return endian::InlHostByteOrder();
}
lldb_private::ArchSpec
DynamicLoaderDarwinKernel::KextImageInfo::GetArchitecture() const {
if (m_memory_module_sp)
return m_memory_module_sp->GetArchitecture();
if (m_module_sp)
return m_module_sp->GetArchitecture();
return lldb_private::ArchSpec();
}
// Load the kernel module and initialize the "m_kernel" member. Return true
// _only_ if the kernel is loaded the first time through (subsequent calls to
// this function should return false after the kernel has been already loaded).
void DynamicLoaderDarwinKernel::LoadKernelModuleIfNeeded() {
if (!m_kext_summary_header_ptr_addr.IsValid()) {
m_kernel.Clear();
m_kernel.SetModule(m_process->GetTarget().GetExecutableModule());
m_kernel.SetIsKernel(true);
ConstString kernel_name("mach_kernel");
if (m_kernel.GetModule().get() && m_kernel.GetModule()->GetObjectFile() &&
!m_kernel.GetModule()
->GetObjectFile()
->GetFileSpec()
.GetFilename()
.IsEmpty()) {
kernel_name =
m_kernel.GetModule()->GetObjectFile()->GetFileSpec().GetFilename();
}
m_kernel.SetName(kernel_name.AsCString());
if (m_kernel.GetLoadAddress() == LLDB_INVALID_ADDRESS) {
m_kernel.SetLoadAddress(m_kernel_load_address);
if (m_kernel.GetLoadAddress() == LLDB_INVALID_ADDRESS &&
m_kernel.GetModule()) {
// We didn't get a hint from the process, so we will try the kernel at
// the address that it exists at in the file if we have one
ObjectFile *kernel_object_file = m_kernel.GetModule()->GetObjectFile();
if (kernel_object_file) {
addr_t load_address =
kernel_object_file->GetBaseAddress().GetLoadAddress(
&m_process->GetTarget());
addr_t file_address =
kernel_object_file->GetBaseAddress().GetFileAddress();
if (load_address != LLDB_INVALID_ADDRESS && load_address != 0) {
m_kernel.SetLoadAddress(load_address);
if (load_address != file_address) {
// Don't accidentally relocate the kernel to the File address --
// the Load address has already been set to its actual in-memory
// address. Mark it as IsLoaded.
m_kernel.SetProcessStopId(m_process->GetStopID());
}
} else {
m_kernel.SetLoadAddress(file_address);
}
}
}
}
if (m_kernel.GetLoadAddress() != LLDB_INVALID_ADDRESS) {
if (!m_kernel.LoadImageUsingMemoryModule(m_process)) {
m_kernel.LoadImageAtFileAddress(m_process);
}
}
// The operating system plugin gets loaded and initialized in
// LoadImageUsingMemoryModule when we discover the kernel dSYM. For a core
// file in particular, that's the wrong place to do this, since we haven't
// fixed up the section addresses yet. So let's redo it here.
LoadOperatingSystemPlugin(false);
if (m_kernel.IsLoaded() && m_kernel.GetModule()) {
static ConstString kext_summary_symbol("gLoadedKextSummaries");
const Symbol *symbol =
m_kernel.GetModule()->FindFirstSymbolWithNameAndType(
kext_summary_symbol, eSymbolTypeData);
if (symbol) {
m_kext_summary_header_ptr_addr = symbol->GetAddress();
// Update all image infos
ReadAllKextSummaries();
}
} else {
m_kernel.Clear();
}
}
}
// Static callback function that gets called when our DYLD notification
// breakpoint gets hit. We update all of our image infos and then let our super
// class DynamicLoader class decide if we should stop or not (based on global
// preference).
bool DynamicLoaderDarwinKernel::BreakpointHitCallback(
void *baton, StoppointCallbackContext *context, user_id_t break_id,
user_id_t break_loc_id) {
return static_cast<DynamicLoaderDarwinKernel *>(baton)->BreakpointHit(
context, break_id, break_loc_id);
}
bool DynamicLoaderDarwinKernel::BreakpointHit(StoppointCallbackContext *context,
user_id_t break_id,
user_id_t break_loc_id) {
Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_DYNAMIC_LOADER));
LLDB_LOGF(log, "DynamicLoaderDarwinKernel::BreakpointHit (...)\n");
ReadAllKextSummaries();
if (log)
PutToLog(log);
return GetStopWhenImagesChange();
}
bool DynamicLoaderDarwinKernel::ReadKextSummaryHeader() {
std::lock_guard<std::recursive_mutex> guard(m_mutex);
// the all image infos is already valid for this process stop ID
if (m_kext_summary_header_ptr_addr.IsValid()) {
const uint32_t addr_size = m_kernel.GetAddressByteSize();
const ByteOrder byte_order = m_kernel.GetByteOrder();
Status error;
// Read enough bytes for a "OSKextLoadedKextSummaryHeader" structure which
// is currently 4 uint32_t and a pointer.
uint8_t buf[24];
DataExtractor data(buf, sizeof(buf), byte_order, addr_size);
const size_t count = 4 * sizeof(uint32_t) + addr_size;
const bool prefer_file_cache = false;
if (m_process->GetTarget().ReadPointerFromMemory(
m_kext_summary_header_ptr_addr, prefer_file_cache, error,
m_kext_summary_header_addr)) {
// We got a valid address for our kext summary header and make sure it
// isn't NULL
if (m_kext_summary_header_addr.IsValid() &&
m_kext_summary_header_addr.GetFileAddress() != 0) {
const size_t bytes_read = m_process->GetTarget().ReadMemory(
m_kext_summary_header_addr, prefer_file_cache, buf, count, error);
if (bytes_read == count) {
lldb::offset_t offset = 0;
m_kext_summary_header.version = data.GetU32(&offset);
if (m_kext_summary_header.version > 128) {
Stream &s = m_process->GetTarget().GetDebugger().GetOutputStream();
s.Printf("WARNING: Unable to read kext summary header, got "
"improbable version number %u\n",
m_kext_summary_header.version);
// If we get an improbably large version number, we're probably
// getting bad memory.
m_kext_summary_header_addr.Clear();
return false;
}
if (m_kext_summary_header.version >= 2) {
m_kext_summary_header.entry_size = data.GetU32(&offset);
if (m_kext_summary_header.entry_size > 4096) {
// If we get an improbably large entry_size, we're probably
// getting bad memory.
Stream &s =
m_process->GetTarget().GetDebugger().GetOutputStream();
s.Printf("WARNING: Unable to read kext summary header, got "
"improbable entry_size %u\n",
m_kext_summary_header.entry_size);
m_kext_summary_header_addr.Clear();
return false;
}
} else {
// Versions less than 2 didn't have an entry size, it was hard
// coded
m_kext_summary_header.entry_size =
KERNEL_MODULE_ENTRY_SIZE_VERSION_1;
}
m_kext_summary_header.entry_count = data.GetU32(&offset);
if (m_kext_summary_header.entry_count > 10000) {
// If we get an improbably large number of kexts, we're probably
// getting bad memory.
Stream &s = m_process->GetTarget().GetDebugger().GetOutputStream();
s.Printf("WARNING: Unable to read kext summary header, got "
"improbable number of kexts %u\n",
m_kext_summary_header.entry_count);
m_kext_summary_header_addr.Clear();
return false;
}
return true;
}
}
}
}
m_kext_summary_header_addr.Clear();
return false;
}
// We've either (a) just attached to a new kernel, or (b) the kexts-changed
// breakpoint was hit and we need to figure out what kexts have been added or
// removed. Read the kext summaries from the inferior kernel memory, compare
// them against the m_known_kexts vector and update the m_known_kexts vector as
// needed to keep in sync with the inferior.
bool DynamicLoaderDarwinKernel::ParseKextSummaries(
const Address &kext_summary_addr, uint32_t count) {
KextImageInfo::collection kext_summaries;
Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_DYNAMIC_LOADER));
LLDB_LOGF(log,
"Kexts-changed breakpoint hit, there are %d kexts currently.\n",
count);
std::lock_guard<std::recursive_mutex> guard(m_mutex);
if (!ReadKextSummaries(kext_summary_addr, count, kext_summaries))
return false;
// read the plugin.dynamic-loader.darwin-kernel.load-kexts setting -- if the
// user requested no kext loading, don't print any messages about kexts &
// don't try to read them.
const bool load_kexts = GetGlobalProperties()->GetLoadKexts();
// By default, all kexts we've loaded in the past are marked as "remove" and
// all of the kexts we just found out about from ReadKextSummaries are marked
// as "add".
std::vector<bool> to_be_removed(m_known_kexts.size(), true);
std::vector<bool> to_be_added(count, true);
int number_of_new_kexts_being_added = 0;
int number_of_old_kexts_being_removed = m_known_kexts.size();
const uint32_t new_kexts_size = kext_summaries.size();
const uint32_t old_kexts_size = m_known_kexts.size();
// The m_known_kexts vector may have entries that have been Cleared, or are a
// kernel.
for (uint32_t old_kext = 0; old_kext < old_kexts_size; old_kext++) {
bool ignore = false;
KextImageInfo &image_info = m_known_kexts[old_kext];
if (image_info.IsKernel()) {
ignore = true;
} else if (image_info.GetLoadAddress() == LLDB_INVALID_ADDRESS &&
!image_info.GetModule()) {
ignore = true;
}
if (ignore) {
number_of_old_kexts_being_removed--;
to_be_removed[old_kext] = false;
}
}
// Scan over the list of kexts we just read from the kernel, note those that
// need to be added and those already loaded.
for (uint32_t new_kext = 0; new_kext < new_kexts_size; new_kext++) {
bool add_this_one = true;
for (uint32_t old_kext = 0; old_kext < old_kexts_size; old_kext++) {
if (m_known_kexts[old_kext] == kext_summaries[new_kext]) {
// We already have this kext, don't re-load it.
to_be_added[new_kext] = false;
// This kext is still present, do not remove it.
to_be_removed[old_kext] = false;
number_of_old_kexts_being_removed--;
add_this_one = false;
break;
}
}
// If this "kext" entry is actually an alias for the kernel -- the kext was
// compiled into the kernel or something -- then we don't want to load the
// kernel's text section at a different address. Ignore this kext entry.
if (kext_summaries[new_kext].GetUUID().IsValid() &&
m_kernel.GetUUID().IsValid() &&
kext_summaries[new_kext].GetUUID() == m_kernel.GetUUID()) {
to_be_added[new_kext] = false;
break;
}
if (add_this_one) {
number_of_new_kexts_being_added++;
}
}
if (number_of_new_kexts_being_added == 0 &&
number_of_old_kexts_being_removed == 0)
return true;
Stream &s = m_process->GetTarget().GetDebugger().GetOutputStream();
if (load_kexts) {
if (number_of_new_kexts_being_added > 0 &&
number_of_old_kexts_being_removed > 0) {
s.Printf("Loading %d kext modules and unloading %d kext modules ",
number_of_new_kexts_being_added,
number_of_old_kexts_being_removed);
} else if (number_of_new_kexts_being_added > 0) {
s.Printf("Loading %d kext modules ", number_of_new_kexts_being_added);
} else if (number_of_old_kexts_being_removed > 0) {
s.Printf("Unloading %d kext modules ", number_of_old_kexts_being_removed);
}
}
if (log) {
if (load_kexts) {
LLDB_LOGF(log,
"DynamicLoaderDarwinKernel::ParseKextSummaries: %d kexts "
"added, %d kexts removed",
number_of_new_kexts_being_added,
number_of_old_kexts_being_removed);
} else {
LLDB_LOGF(log,
"DynamicLoaderDarwinKernel::ParseKextSummaries kext loading is "
"disabled, else would have %d kexts added, %d kexts removed",
number_of_new_kexts_being_added,
number_of_old_kexts_being_removed);
}
}
// Build up a list of <kext-name, uuid> for any kexts that fail to load
std::vector<std::pair<std::string, UUID>> kexts_failed_to_load;
if (number_of_new_kexts_being_added > 0) {
ModuleList loaded_module_list;
const uint32_t num_of_new_kexts = kext_summaries.size();
for (uint32_t new_kext = 0; new_kext < num_of_new_kexts; new_kext++) {
if (to_be_added[new_kext]) {
KextImageInfo &image_info = kext_summaries[new_kext];
bool kext_successfully_added = true;
if (load_kexts) {
if (!image_info.LoadImageUsingMemoryModule(m_process)) {
kexts_failed_to_load.push_back(std::pair<std::string, UUID>(
kext_summaries[new_kext].GetName(),
kext_summaries[new_kext].GetUUID()));
image_info.LoadImageAtFileAddress(m_process);
kext_successfully_added = false;
}
}
m_known_kexts.push_back(image_info);
if (image_info.GetModule() &&
m_process->GetStopID() == image_info.GetProcessStopId())
loaded_module_list.AppendIfNeeded(image_info.GetModule());
if (load_kexts) {
if (kext_successfully_added)
s.Printf(".");
else
s.Printf("-");
}
if (log)
kext_summaries[new_kext].PutToLog(log);
}
}
m_process->GetTarget().ModulesDidLoad(loaded_module_list);
}
if (number_of_old_kexts_being_removed > 0) {
ModuleList loaded_module_list;
const uint32_t num_of_old_kexts = m_known_kexts.size();
for (uint32_t old_kext = 0; old_kext < num_of_old_kexts; old_kext++) {
ModuleList unloaded_module_list;
if (to_be_removed[old_kext]) {
KextImageInfo &image_info = m_known_kexts[old_kext];
// You can't unload the kernel.
if (!image_info.IsKernel()) {
if (image_info.GetModule()) {
unloaded_module_list.AppendIfNeeded(image_info.GetModule());
}
s.Printf(".");
image_info.Clear();
// should pull it out of the KextImageInfos vector but that would
// mutate the list and invalidate the to_be_removed bool vector;
// leaving it in place once Cleared() is relatively harmless.
}
}
m_process->GetTarget().ModulesDidUnload(unloaded_module_list, false);
}
}
if (load_kexts) {
s.Printf(" done.\n");
if (kexts_failed_to_load.size() > 0 && number_of_new_kexts_being_added > 0) {
s.Printf("Failed to load %d of %d kexts:\n",
(int)kexts_failed_to_load.size(),
number_of_new_kexts_being_added);
// print a sorted list of <kext-name, uuid> kexts which failed to load
unsigned longest_name = 0;
std::sort(kexts_failed_to_load.begin(), kexts_failed_to_load.end());
for (const auto &ku : kexts_failed_to_load) {
if (ku.first.size() > longest_name)
longest_name = ku.first.size();
}
for (const auto &ku : kexts_failed_to_load) {
std::string uuid;
if (ku.second.IsValid())
uuid = ku.second.GetAsString();
s.Printf(" %-*s %s\n", longest_name, ku.first.c_str(), uuid.c_str());
}
}
s.Flush();
}
return true;
}
uint32_t DynamicLoaderDarwinKernel::ReadKextSummaries(
const Address &kext_summary_addr, uint32_t image_infos_count,
KextImageInfo::collection &image_infos) {
const ByteOrder endian = m_kernel.GetByteOrder();
const uint32_t addr_size = m_kernel.GetAddressByteSize();
image_infos.resize(image_infos_count);
const size_t count = image_infos.size() * m_kext_summary_header.entry_size;
DataBufferHeap data(count, 0);
Status error;
const bool prefer_file_cache = false;
const size_t bytes_read = m_process->GetTarget().ReadMemory(
kext_summary_addr, prefer_file_cache, data.GetBytes(), data.GetByteSize(),
error);
if (bytes_read == count) {
DataExtractor extractor(data.GetBytes(), data.GetByteSize(), endian,
addr_size);
uint32_t i = 0;
for (uint32_t kext_summary_offset = 0;
i < image_infos.size() &&
extractor.ValidOffsetForDataOfSize(kext_summary_offset,
m_kext_summary_header.entry_size);
++i, kext_summary_offset += m_kext_summary_header.entry_size) {
lldb::offset_t offset = kext_summary_offset;
const void *name_data =
extractor.GetData(&offset, KERNEL_MODULE_MAX_NAME);
if (name_data == nullptr)
break;
image_infos[i].SetName((const char *)name_data);
UUID uuid = UUID::fromOptionalData(extractor.GetData(&offset, 16), 16);
image_infos[i].SetUUID(uuid);
image_infos[i].SetLoadAddress(extractor.GetU64(&offset));
image_infos[i].SetSize(extractor.GetU64(&offset));
}
if (i < image_infos.size())
image_infos.resize(i);
} else {
image_infos.clear();
}
return image_infos.size();
}
bool DynamicLoaderDarwinKernel::ReadAllKextSummaries() {
std::lock_guard<std::recursive_mutex> guard(m_mutex);
if (ReadKextSummaryHeader()) {
if (m_kext_summary_header.entry_count > 0 &&
m_kext_summary_header_addr.IsValid()) {
Address summary_addr(m_kext_summary_header_addr);
summary_addr.Slide(m_kext_summary_header.GetSize());
if (!ParseKextSummaries(summary_addr,
m_kext_summary_header.entry_count)) {
m_known_kexts.clear();
}
return true;
}
}
return false;
}
// Dump an image info structure to the file handle provided.
void DynamicLoaderDarwinKernel::KextImageInfo::PutToLog(Log *log) const {
if (m_load_address == LLDB_INVALID_ADDRESS) {
LLDB_LOG(log, "uuid={0} name=\"{1}\" (UNLOADED)", m_uuid.GetAsString(),
m_name);
} else {
LLDB_LOG(log, "addr={0:x+16} size={1:x+16} uuid={2} name=\"{3}\"",
m_load_address, m_size, m_uuid.GetAsString(), m_name);
}
}
// Dump the _dyld_all_image_infos members and all current image infos that we
// have parsed to the file handle provided.
void DynamicLoaderDarwinKernel::PutToLog(Log *log) const {
if (log == nullptr)
return;
std::lock_guard<std::recursive_mutex> guard(m_mutex);
LLDB_LOGF(log,
"gLoadedKextSummaries = 0x%16.16" PRIx64
" { version=%u, entry_size=%u, entry_count=%u }",
m_kext_summary_header_addr.GetFileAddress(),
m_kext_summary_header.version, m_kext_summary_header.entry_size,
m_kext_summary_header.entry_count);
size_t i;
const size_t count = m_known_kexts.size();
if (count > 0) {
log->PutCString("Loaded:");
for (i = 0; i < count; i++)
m_known_kexts[i].PutToLog(log);
}
}
void DynamicLoaderDarwinKernel::PrivateInitialize(Process *process) {
DEBUG_PRINTF("DynamicLoaderDarwinKernel::%s() process state = %s\n",
__FUNCTION__, StateAsCString(m_process->GetState()));
Clear(true);
m_process = process;
}
void DynamicLoaderDarwinKernel::SetNotificationBreakpointIfNeeded() {
if (m_break_id == LLDB_INVALID_BREAK_ID && m_kernel.GetModule()) {
DEBUG_PRINTF("DynamicLoaderDarwinKernel::%s() process state = %s\n",
__FUNCTION__, StateAsCString(m_process->GetState()));
const bool internal_bp = true;
const bool hardware = false;
const LazyBool skip_prologue = eLazyBoolNo;
FileSpecList module_spec_list;
module_spec_list.Append(m_kernel.GetModule()->GetFileSpec());
Breakpoint *bp =
m_process->GetTarget()
.CreateBreakpoint(&module_spec_list, nullptr,
"OSKextLoadedKextSummariesUpdated",
eFunctionNameTypeFull, eLanguageTypeUnknown, 0,
skip_prologue, internal_bp, hardware)
.get();
bp->SetCallback(DynamicLoaderDarwinKernel::BreakpointHitCallback, this,
true);
m_break_id = bp->GetID();
}
}
// Member function that gets called when the process state changes.
void DynamicLoaderDarwinKernel::PrivateProcessStateChanged(Process *process,
StateType state) {
DEBUG_PRINTF("DynamicLoaderDarwinKernel::%s(%s)\n", __FUNCTION__,
StateAsCString(state));
switch (state) {
case eStateConnected:
case eStateAttaching:
case eStateLaunching:
case eStateInvalid:
case eStateUnloaded:
case eStateExited:
case eStateDetached:
Clear(false);
break;
case eStateStopped:
UpdateIfNeeded();
break;
case eStateRunning:
case eStateStepping:
case eStateCrashed:
case eStateSuspended:
break;
}
}
ThreadPlanSP
DynamicLoaderDarwinKernel::GetStepThroughTrampolinePlan(Thread &thread,
bool stop_others) {
ThreadPlanSP thread_plan_sp;
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_STEP));
LLDB_LOGF(log, "Could not find symbol for step through.");
return thread_plan_sp;
}
Status DynamicLoaderDarwinKernel::CanLoadImage() {
Status error;
error.SetErrorString(
"always unsafe to load or unload shared libraries in the darwin kernel");
return error;
}
void DynamicLoaderDarwinKernel::Initialize() {
PluginManager::RegisterPlugin(GetPluginNameStatic(),
GetPluginDescriptionStatic(), CreateInstance,
DebuggerInitialize);
}
void DynamicLoaderDarwinKernel::Terminate() {
PluginManager::UnregisterPlugin(CreateInstance);
}
void DynamicLoaderDarwinKernel::DebuggerInitialize(
lldb_private::Debugger &debugger) {
if (!PluginManager::GetSettingForDynamicLoaderPlugin(
debugger, DynamicLoaderDarwinKernelProperties::GetSettingName())) {
const bool is_global_setting = true;
PluginManager::CreateSettingForDynamicLoaderPlugin(
debugger, GetGlobalProperties()->GetValueProperties(),
ConstString("Properties for the DynamicLoaderDarwinKernel plug-in."),
is_global_setting);
}
}
lldb_private::ConstString DynamicLoaderDarwinKernel::GetPluginNameStatic() {
static ConstString g_name("darwin-kernel");
return g_name;
}
const char *DynamicLoaderDarwinKernel::GetPluginDescriptionStatic() {
return "Dynamic loader plug-in that watches for shared library loads/unloads "
"in the MacOSX kernel.";
}
// PluginInterface protocol
lldb_private::ConstString DynamicLoaderDarwinKernel::GetPluginName() {
return GetPluginNameStatic();
}
uint32_t DynamicLoaderDarwinKernel::GetPluginVersion() { return 1; }
lldb::ByteOrder
DynamicLoaderDarwinKernel::GetByteOrderFromMagic(uint32_t magic) {
switch (magic) {
case llvm::MachO::MH_MAGIC:
case llvm::MachO::MH_MAGIC_64:
return endian::InlHostByteOrder();
case llvm::MachO::MH_CIGAM:
case llvm::MachO::MH_CIGAM_64:
if (endian::InlHostByteOrder() == lldb::eByteOrderBig)
return lldb::eByteOrderLittle;
else
return lldb::eByteOrderBig;
default:
break;
}
return lldb::eByteOrderInvalid;
}