You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

423 lines
16 KiB

//===-- OperatingSystemPython.cpp -----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "lldb/Host/Config.h"
#if LLDB_ENABLE_PYTHON
#include "OperatingSystemPython.h"
#include "Plugins/Process/Utility/DynamicRegisterInfo.h"
#include "Plugins/Process/Utility/RegisterContextDummy.h"
#include "Plugins/Process/Utility/RegisterContextMemory.h"
#include "Plugins/Process/Utility/ThreadMemory.h"
#include "lldb/Core/Debugger.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/ValueObjectVariable.h"
#include "lldb/Interpreter/CommandInterpreter.h"
#include "lldb/Interpreter/ScriptInterpreter.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Symbol/VariableList.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/StopInfo.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "lldb/Target/ThreadList.h"
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/RegisterValue.h"
#include "lldb/Utility/StreamString.h"
#include "lldb/Utility/StructuredData.h"
#include <memory>
using namespace lldb;
using namespace lldb_private;
LLDB_PLUGIN_DEFINE(OperatingSystemPython)
void OperatingSystemPython::Initialize() {
PluginManager::RegisterPlugin(GetPluginNameStatic(),
GetPluginDescriptionStatic(), CreateInstance,
nullptr);
}
void OperatingSystemPython::Terminate() {
PluginManager::UnregisterPlugin(CreateInstance);
}
OperatingSystem *OperatingSystemPython::CreateInstance(Process *process,
bool force) {
// Python OperatingSystem plug-ins must be requested by name, so force must
// be true
FileSpec python_os_plugin_spec(process->GetPythonOSPluginPath());
if (python_os_plugin_spec &&
FileSystem::Instance().Exists(python_os_plugin_spec)) {
std::unique_ptr<OperatingSystemPython> os_up(
new OperatingSystemPython(process, python_os_plugin_spec));
if (os_up.get() && os_up->IsValid())
return os_up.release();
}
return nullptr;
}
ConstString OperatingSystemPython::GetPluginNameStatic() {
static ConstString g_name("python");
return g_name;
}
const char *OperatingSystemPython::GetPluginDescriptionStatic() {
return "Operating system plug-in that gathers OS information from a python "
"class that implements the necessary OperatingSystem functionality.";
}
OperatingSystemPython::OperatingSystemPython(lldb_private::Process *process,
const FileSpec &python_module_path)
: OperatingSystem(process), m_thread_list_valobj_sp(), m_register_info_up(),
m_interpreter(nullptr), m_python_object_sp() {
if (!process)
return;
TargetSP target_sp = process->CalculateTarget();
if (!target_sp)
return;
m_interpreter = target_sp->GetDebugger().GetScriptInterpreter();
if (m_interpreter) {
std::string os_plugin_class_name(
python_module_path.GetFilename().AsCString(""));
if (!os_plugin_class_name.empty()) {
const bool init_session = false;
char python_module_path_cstr[PATH_MAX];
python_module_path.GetPath(python_module_path_cstr,
sizeof(python_module_path_cstr));
Status error;
if (m_interpreter->LoadScriptingModule(python_module_path_cstr,
init_session, error)) {
// Strip the ".py" extension if there is one
size_t py_extension_pos = os_plugin_class_name.rfind(".py");
if (py_extension_pos != std::string::npos)
os_plugin_class_name.erase(py_extension_pos);
// Add ".OperatingSystemPlugIn" to the module name to get a string like
// "modulename.OperatingSystemPlugIn"
os_plugin_class_name += ".OperatingSystemPlugIn";
StructuredData::ObjectSP object_sp =
m_interpreter->OSPlugin_CreatePluginObject(
os_plugin_class_name.c_str(), process->CalculateProcess());
if (object_sp && object_sp->IsValid())
m_python_object_sp = object_sp;
}
}
}
}
OperatingSystemPython::~OperatingSystemPython() {}
DynamicRegisterInfo *OperatingSystemPython::GetDynamicRegisterInfo() {
if (m_register_info_up == nullptr) {
if (!m_interpreter || !m_python_object_sp)
return nullptr;
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OS));
LLDB_LOGF(log,
"OperatingSystemPython::GetDynamicRegisterInfo() fetching "
"thread register definitions from python for pid %" PRIu64,
m_process->GetID());
StructuredData::DictionarySP dictionary =
m_interpreter->OSPlugin_RegisterInfo(m_python_object_sp);
if (!dictionary)
return nullptr;
m_register_info_up = std::make_unique<DynamicRegisterInfo>(
*dictionary, m_process->GetTarget().GetArchitecture());
assert(m_register_info_up->GetNumRegisters() > 0);
assert(m_register_info_up->GetNumRegisterSets() > 0);
}
return m_register_info_up.get();
}
// PluginInterface protocol
ConstString OperatingSystemPython::GetPluginName() {
return GetPluginNameStatic();
}
uint32_t OperatingSystemPython::GetPluginVersion() { return 1; }
bool OperatingSystemPython::UpdateThreadList(ThreadList &old_thread_list,
ThreadList &core_thread_list,
ThreadList &new_thread_list) {
if (!m_interpreter || !m_python_object_sp)
return false;
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OS));
// First thing we have to do is to try to get the API lock, and the
// interpreter lock. We're going to change the thread content of the process,
// and we're going to use python, which requires the API lock to do it. We
// need the interpreter lock to make sure thread_info_dict stays alive.
//
// If someone already has the API lock, that is ok, we just want to avoid
// external code from making new API calls while this call is happening.
//
// This is a recursive lock so we can grant it to any Python code called on
// the stack below us.
Target &target = m_process->GetTarget();
std::unique_lock<std::recursive_mutex> api_lock(target.GetAPIMutex(),
std::defer_lock);
(void)api_lock.try_lock(); // See above.
auto interpreter_lock = m_interpreter->AcquireInterpreterLock();
LLDB_LOGF(log,
"OperatingSystemPython::UpdateThreadList() fetching thread "
"data from python for pid %" PRIu64,
m_process->GetID());
// The threads that are in "core_thread_list" upon entry are the threads from
// the lldb_private::Process subclass, no memory threads will be in this
// list.
StructuredData::ArraySP threads_list =
m_interpreter->OSPlugin_ThreadsInfo(m_python_object_sp);
const uint32_t num_cores = core_thread_list.GetSize(false);
// Make a map so we can keep track of which cores were used from the
// core_thread list. Any real threads/cores that weren't used should later be
// put back into the "new_thread_list".
std::vector<bool> core_used_map(num_cores, false);
if (threads_list) {
if (log) {
StreamString strm;
threads_list->Dump(strm);
LLDB_LOGF(log, "threads_list = %s", strm.GetData());
}
const uint32_t num_threads = threads_list->GetSize();
for (uint32_t i = 0; i < num_threads; ++i) {
StructuredData::ObjectSP thread_dict_obj =
threads_list->GetItemAtIndex(i);
if (auto thread_dict = thread_dict_obj->GetAsDictionary()) {
ThreadSP thread_sp(CreateThreadFromThreadInfo(
*thread_dict, core_thread_list, old_thread_list, core_used_map,
nullptr));
if (thread_sp)
new_thread_list.AddThread(thread_sp);
}
}
}
// Any real core threads that didn't end up backing a memory thread should
// still be in the main thread list, and they should be inserted at the
// beginning of the list
uint32_t insert_idx = 0;
for (uint32_t core_idx = 0; core_idx < num_cores; ++core_idx) {
if (!core_used_map[core_idx]) {
new_thread_list.InsertThread(
core_thread_list.GetThreadAtIndex(core_idx, false), insert_idx);
++insert_idx;
}
}
return new_thread_list.GetSize(false) > 0;
}
ThreadSP OperatingSystemPython::CreateThreadFromThreadInfo(
StructuredData::Dictionary &thread_dict, ThreadList &core_thread_list,
ThreadList &old_thread_list, std::vector<bool> &core_used_map,
bool *did_create_ptr) {
ThreadSP thread_sp;
tid_t tid = LLDB_INVALID_THREAD_ID;
if (!thread_dict.GetValueForKeyAsInteger("tid", tid))
return ThreadSP();
uint32_t core_number;
addr_t reg_data_addr;
llvm::StringRef name;
llvm::StringRef queue;
thread_dict.GetValueForKeyAsInteger("core", core_number, UINT32_MAX);
thread_dict.GetValueForKeyAsInteger("register_data_addr", reg_data_addr,
LLDB_INVALID_ADDRESS);
thread_dict.GetValueForKeyAsString("name", name);
thread_dict.GetValueForKeyAsString("queue", queue);
// See if a thread already exists for "tid"
thread_sp = old_thread_list.FindThreadByID(tid, false);
if (thread_sp) {
// A thread already does exist for "tid", make sure it was an operating
// system
// plug-in generated thread.
if (!IsOperatingSystemPluginThread(thread_sp)) {
// We have thread ID overlap between the protocol threads and the
// operating system threads, clear the thread so we create an operating
// system thread for this.
thread_sp.reset();
}
}
if (!thread_sp) {
if (did_create_ptr)
*did_create_ptr = true;
thread_sp = std::make_shared<ThreadMemory>(*m_process, tid, name, queue,
reg_data_addr);
}
if (core_number < core_thread_list.GetSize(false)) {
ThreadSP core_thread_sp(
core_thread_list.GetThreadAtIndex(core_number, false));
if (core_thread_sp) {
// Keep track of which cores were set as the backing thread for memory
// threads...
if (core_number < core_used_map.size())
core_used_map[core_number] = true;
ThreadSP backing_core_thread_sp(core_thread_sp->GetBackingThread());
if (backing_core_thread_sp) {
thread_sp->SetBackingThread(backing_core_thread_sp);
} else {
thread_sp->SetBackingThread(core_thread_sp);
}
}
}
return thread_sp;
}
void OperatingSystemPython::ThreadWasSelected(Thread *thread) {}
RegisterContextSP
OperatingSystemPython::CreateRegisterContextForThread(Thread *thread,
addr_t reg_data_addr) {
RegisterContextSP reg_ctx_sp;
if (!m_interpreter || !m_python_object_sp || !thread)
return reg_ctx_sp;
if (!IsOperatingSystemPluginThread(thread->shared_from_this()))
return reg_ctx_sp;
// First thing we have to do is to try to get the API lock, and the
// interpreter lock. We're going to change the thread content of the process,
// and we're going to use python, which requires the API lock to do it. We
// need the interpreter lock to make sure thread_info_dict stays alive.
//
// If someone already has the API lock, that is ok, we just want to avoid
// external code from making new API calls while this call is happening.
//
// This is a recursive lock so we can grant it to any Python code called on
// the stack below us.
Target &target = m_process->GetTarget();
std::unique_lock<std::recursive_mutex> api_lock(target.GetAPIMutex(),
std::defer_lock);
(void)api_lock.try_lock(); // See above.
auto interpreter_lock = m_interpreter->AcquireInterpreterLock();
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_THREAD));
if (reg_data_addr != LLDB_INVALID_ADDRESS) {
// The registers data is in contiguous memory, just create the register
// context using the address provided
LLDB_LOGF(log,
"OperatingSystemPython::CreateRegisterContextForThread (tid "
"= 0x%" PRIx64 ", 0x%" PRIx64 ", reg_data_addr = 0x%" PRIx64
") creating memory register context",
thread->GetID(), thread->GetProtocolID(), reg_data_addr);
reg_ctx_sp = std::make_shared<RegisterContextMemory>(
*thread, 0, *GetDynamicRegisterInfo(), reg_data_addr);
} else {
// No register data address is provided, query the python plug-in to let it
// make up the data as it sees fit
LLDB_LOGF(log,
"OperatingSystemPython::CreateRegisterContextForThread (tid "
"= 0x%" PRIx64 ", 0x%" PRIx64
") fetching register data from python",
thread->GetID(), thread->GetProtocolID());
StructuredData::StringSP reg_context_data =
m_interpreter->OSPlugin_RegisterContextData(m_python_object_sp,
thread->GetID());
if (reg_context_data) {
std::string value = std::string(reg_context_data->GetValue());
DataBufferSP data_sp(new DataBufferHeap(value.c_str(), value.length()));
if (data_sp->GetByteSize()) {
RegisterContextMemory *reg_ctx_memory = new RegisterContextMemory(
*thread, 0, *GetDynamicRegisterInfo(), LLDB_INVALID_ADDRESS);
if (reg_ctx_memory) {
reg_ctx_sp.reset(reg_ctx_memory);
reg_ctx_memory->SetAllRegisterData(data_sp);
}
}
}
}
// if we still have no register data, fallback on a dummy context to avoid
// crashing
if (!reg_ctx_sp) {
LLDB_LOGF(log,
"OperatingSystemPython::CreateRegisterContextForThread (tid "
"= 0x%" PRIx64 ") forcing a dummy register context",
thread->GetID());
reg_ctx_sp = std::make_shared<RegisterContextDummy>(
*thread, 0, target.GetArchitecture().GetAddressByteSize());
}
return reg_ctx_sp;
}
StopInfoSP
OperatingSystemPython::CreateThreadStopReason(lldb_private::Thread *thread) {
// We should have gotten the thread stop info from the dictionary of data for
// the thread in the initial call to get_thread_info(), this should have been
// cached so we can return it here
StopInfoSP
stop_info_sp; //(StopInfo::CreateStopReasonWithSignal (*thread, SIGSTOP));
return stop_info_sp;
}
lldb::ThreadSP OperatingSystemPython::CreateThread(lldb::tid_t tid,
addr_t context) {
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_THREAD));
LLDB_LOGF(log,
"OperatingSystemPython::CreateThread (tid = 0x%" PRIx64
", context = 0x%" PRIx64 ") fetching register data from python",
tid, context);
if (m_interpreter && m_python_object_sp) {
// First thing we have to do is to try to get the API lock, and the
// interpreter lock. We're going to change the thread content of the
// process, and we're going to use python, which requires the API lock to
// do it. We need the interpreter lock to make sure thread_info_dict stays
// alive.
//
// If someone already has the API lock, that is ok, we just want to avoid
// external code from making new API calls while this call is happening.
//
// This is a recursive lock so we can grant it to any Python code called on
// the stack below us.
Target &target = m_process->GetTarget();
std::unique_lock<std::recursive_mutex> api_lock(target.GetAPIMutex(),
std::defer_lock);
(void)api_lock.try_lock(); // See above.
auto interpreter_lock = m_interpreter->AcquireInterpreterLock();
StructuredData::DictionarySP thread_info_dict =
m_interpreter->OSPlugin_CreateThread(m_python_object_sp, tid, context);
std::vector<bool> core_used_map;
if (thread_info_dict) {
ThreadList core_threads(m_process);
ThreadList &thread_list = m_process->GetThreadList();
bool did_create = false;
ThreadSP thread_sp(
CreateThreadFromThreadInfo(*thread_info_dict, core_threads,
thread_list, core_used_map, &did_create));
if (did_create)
thread_list.AddThread(thread_sp);
return thread_sp;
}
}
return ThreadSP();
}
#endif // #if LLDB_ENABLE_PYTHON