You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
170 lines
6.7 KiB
170 lines
6.7 KiB
//===- QuantizationUtilsTest.cpp - unit tests for quantization utils ------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Quant/QuantOps.h"
|
|
#include "mlir/Dialect/Quant/QuantizeUtils.h"
|
|
#include "mlir/Dialect/Quant/UniformSupport.h"
|
|
#include "mlir/IR/Attributes.h"
|
|
#include "mlir/IR/BuiltinTypes.h"
|
|
#include "gmock/gmock.h"
|
|
#include "gtest/gtest.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::quant;
|
|
|
|
namespace {
|
|
|
|
// Test UniformQuantizedValueConverter converts all APFloat to a magic number 5.
|
|
class TestUniformQuantizedValueConverter
|
|
: public UniformQuantizedValueConverter {
|
|
public:
|
|
TestUniformQuantizedValueConverter(UniformQuantizedType type)
|
|
: UniformQuantizedValueConverter(type), qtype(type) {}
|
|
APInt quantizeFloatToInt(APFloat expressedValue) const {
|
|
return APInt(qtype.getStorageType().cast<IntegerType>().getWidth(), 5L);
|
|
}
|
|
|
|
private:
|
|
UniformQuantizedType qtype;
|
|
};
|
|
|
|
Attribute getTestFloatAttr(double value, MLIRContext *ctx) {
|
|
return FloatAttr::get(FloatType::getF32(ctx), value);
|
|
}
|
|
|
|
template <typename ConcreteAttrClass, typename... Arg>
|
|
ConcreteAttrClass getTestElementsAttr(MLIRContext *ctx, ArrayRef<int64_t> shape,
|
|
Arg... value) {
|
|
auto eleType = FloatType::getF32(ctx);
|
|
ShapedType tensorType;
|
|
if (shape.size() == 1 && shape[0] == -1) {
|
|
tensorType = UnrankedTensorType::get(eleType);
|
|
} else {
|
|
tensorType = RankedTensorType::get(shape, eleType);
|
|
}
|
|
return ConcreteAttrClass::get(tensorType, value...);
|
|
}
|
|
|
|
ElementsAttr getTestSparseElementsAttr(MLIRContext *ctx,
|
|
ArrayRef<int64_t> shape) {
|
|
auto eleType = FloatType::getF32(ctx);
|
|
ShapedType tensorType;
|
|
if (shape.size() == 1 && shape[0] == -1) {
|
|
tensorType = UnrankedTensorType::get(eleType);
|
|
} else {
|
|
tensorType = RankedTensorType::get(shape, eleType);
|
|
}
|
|
auto indicesType = RankedTensorType::get({1, 2}, IntegerType::get(64, ctx));
|
|
auto indices =
|
|
DenseIntElementsAttr::get(indicesType, {APInt(64, 0), APInt(64, 0)});
|
|
auto valuesType = RankedTensorType::get({1}, eleType);
|
|
auto values = DenseFPElementsAttr::get(valuesType, {APFloat(0.0f)});
|
|
return SparseElementsAttr::get(tensorType, indices, values);
|
|
}
|
|
|
|
UniformQuantizedType getTestQuantizedType(Type storageType, MLIRContext *ctx) {
|
|
return UniformQuantizedType::get(/*flags=*/false, storageType,
|
|
FloatType::getF32(ctx), /*scale=*/1.0,
|
|
/*zeroPoint=*/0, /*storageTypeMin=*/0,
|
|
/*storageTypeMax=*/255);
|
|
}
|
|
|
|
TEST(QuantizationUtilsTest, convertFloatAttrUniform) {
|
|
MLIRContext ctx;
|
|
ctx.getOrLoadDialect<QuantizationDialect>();
|
|
IntegerType convertedType = IntegerType::get(8, &ctx);
|
|
auto quantizedType = getTestQuantizedType(convertedType, &ctx);
|
|
TestUniformQuantizedValueConverter converter(quantizedType);
|
|
|
|
auto realValue = getTestFloatAttr(1.0, &ctx);
|
|
Type typeResult;
|
|
auto valueResult =
|
|
quantizeAttrUniform(realValue, quantizedType, converter, typeResult);
|
|
|
|
EXPECT_EQ(valueResult.cast<IntegerAttr>().getInt(), 5);
|
|
EXPECT_EQ(
|
|
valueResult.cast<IntegerAttr>().getType().cast<IntegerType>().getWidth(),
|
|
convertedType.getWidth());
|
|
}
|
|
|
|
TEST(QuantizationUtilsTest, convertRankedDenseAttrUniform) {
|
|
MLIRContext ctx;
|
|
ctx.getOrLoadDialect<QuantizationDialect>();
|
|
IntegerType convertedType = IntegerType::get(8, &ctx);
|
|
auto quantizedType = getTestQuantizedType(convertedType, &ctx);
|
|
TestUniformQuantizedValueConverter converter(quantizedType);
|
|
auto realValue = getTestElementsAttr<DenseElementsAttr, ArrayRef<Attribute>>(
|
|
&ctx, {1, 2}, {getTestFloatAttr(1.0, &ctx), getTestFloatAttr(2.0, &ctx)});
|
|
|
|
Type returnedType;
|
|
auto returnedValue =
|
|
quantizeAttrUniform(realValue, quantizedType, converter, returnedType);
|
|
|
|
// Check Elements attribute shape and kind are not changed.
|
|
auto tensorType = returnedType.cast<TensorType>();
|
|
auto expectedTensorType = realValue.getType().cast<TensorType>();
|
|
EXPECT_EQ(tensorType.getShape(), expectedTensorType.getShape());
|
|
EXPECT_EQ(tensorType.getElementType(), convertedType);
|
|
EXPECT_TRUE(returnedValue.isa<DenseIntElementsAttr>());
|
|
|
|
// Check Elements attribute element value is expected.
|
|
auto firstValue = returnedValue.cast<ElementsAttr>().getValue({0, 0});
|
|
EXPECT_EQ(firstValue.cast<IntegerAttr>().getInt(), 5);
|
|
}
|
|
|
|
TEST(QuantizationUtilsTest, convertRankedSplatAttrUniform) {
|
|
MLIRContext ctx;
|
|
ctx.getOrLoadDialect<QuantizationDialect>();
|
|
IntegerType convertedType = IntegerType::get(8, &ctx);
|
|
auto quantizedType = getTestQuantizedType(convertedType, &ctx);
|
|
TestUniformQuantizedValueConverter converter(quantizedType);
|
|
auto realValue = getTestElementsAttr<DenseElementsAttr, Attribute>(
|
|
&ctx, {1, 2}, getTestFloatAttr(1.0, &ctx));
|
|
|
|
Type returnedType;
|
|
auto returnedValue =
|
|
quantizeAttrUniform(realValue, quantizedType, converter, returnedType);
|
|
|
|
// Check Elements attribute shape and kind are not changed.
|
|
auto tensorType = returnedType.cast<TensorType>();
|
|
auto expectedTensorType = realValue.getType().cast<TensorType>();
|
|
EXPECT_EQ(tensorType.getShape(), expectedTensorType.getShape());
|
|
EXPECT_EQ(tensorType.getElementType(), convertedType);
|
|
EXPECT_TRUE(returnedValue.isa<SplatElementsAttr>());
|
|
|
|
// Check Elements attribute element value is expected.
|
|
auto firstValue = returnedValue.cast<ElementsAttr>().getValue({0, 0});
|
|
EXPECT_EQ(firstValue.cast<IntegerAttr>().getInt(), 5);
|
|
}
|
|
|
|
TEST(QuantizationUtilsTest, convertRankedSparseAttrUniform) {
|
|
MLIRContext ctx;
|
|
ctx.getOrLoadDialect<QuantizationDialect>();
|
|
IntegerType convertedType = IntegerType::get(8, &ctx);
|
|
auto quantizedType = getTestQuantizedType(convertedType, &ctx);
|
|
TestUniformQuantizedValueConverter converter(quantizedType);
|
|
auto realValue = getTestSparseElementsAttr(&ctx, {1, 2});
|
|
|
|
Type returnedType;
|
|
auto returnedValue =
|
|
quantizeAttrUniform(realValue, quantizedType, converter, returnedType);
|
|
|
|
// Check Elements attribute shape and kind are not changed.
|
|
auto tensorType = returnedType.cast<TensorType>();
|
|
auto expectedTensorType = realValue.getType().cast<TensorType>();
|
|
EXPECT_EQ(tensorType.getShape(), expectedTensorType.getShape());
|
|
EXPECT_EQ(tensorType.getElementType(), convertedType);
|
|
EXPECT_TRUE(returnedValue.isa<SparseElementsAttr>());
|
|
|
|
// Check Elements attribute element value is expected.
|
|
auto firstValue = returnedValue.cast<ElementsAttr>().getValue({0, 0});
|
|
EXPECT_EQ(firstValue.cast<IntegerAttr>().getInt(), 5);
|
|
}
|
|
|
|
} // end namespace
|