You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

170 lines
6.7 KiB

//===- QuantizationUtilsTest.cpp - unit tests for quantization utils ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Quant/QuantOps.h"
#include "mlir/Dialect/Quant/QuantizeUtils.h"
#include "mlir/Dialect/Quant/UniformSupport.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/BuiltinTypes.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
using namespace mlir;
using namespace mlir::quant;
namespace {
// Test UniformQuantizedValueConverter converts all APFloat to a magic number 5.
class TestUniformQuantizedValueConverter
: public UniformQuantizedValueConverter {
public:
TestUniformQuantizedValueConverter(UniformQuantizedType type)
: UniformQuantizedValueConverter(type), qtype(type) {}
APInt quantizeFloatToInt(APFloat expressedValue) const {
return APInt(qtype.getStorageType().cast<IntegerType>().getWidth(), 5L);
}
private:
UniformQuantizedType qtype;
};
Attribute getTestFloatAttr(double value, MLIRContext *ctx) {
return FloatAttr::get(FloatType::getF32(ctx), value);
}
template <typename ConcreteAttrClass, typename... Arg>
ConcreteAttrClass getTestElementsAttr(MLIRContext *ctx, ArrayRef<int64_t> shape,
Arg... value) {
auto eleType = FloatType::getF32(ctx);
ShapedType tensorType;
if (shape.size() == 1 && shape[0] == -1) {
tensorType = UnrankedTensorType::get(eleType);
} else {
tensorType = RankedTensorType::get(shape, eleType);
}
return ConcreteAttrClass::get(tensorType, value...);
}
ElementsAttr getTestSparseElementsAttr(MLIRContext *ctx,
ArrayRef<int64_t> shape) {
auto eleType = FloatType::getF32(ctx);
ShapedType tensorType;
if (shape.size() == 1 && shape[0] == -1) {
tensorType = UnrankedTensorType::get(eleType);
} else {
tensorType = RankedTensorType::get(shape, eleType);
}
auto indicesType = RankedTensorType::get({1, 2}, IntegerType::get(64, ctx));
auto indices =
DenseIntElementsAttr::get(indicesType, {APInt(64, 0), APInt(64, 0)});
auto valuesType = RankedTensorType::get({1}, eleType);
auto values = DenseFPElementsAttr::get(valuesType, {APFloat(0.0f)});
return SparseElementsAttr::get(tensorType, indices, values);
}
UniformQuantizedType getTestQuantizedType(Type storageType, MLIRContext *ctx) {
return UniformQuantizedType::get(/*flags=*/false, storageType,
FloatType::getF32(ctx), /*scale=*/1.0,
/*zeroPoint=*/0, /*storageTypeMin=*/0,
/*storageTypeMax=*/255);
}
TEST(QuantizationUtilsTest, convertFloatAttrUniform) {
MLIRContext ctx;
ctx.getOrLoadDialect<QuantizationDialect>();
IntegerType convertedType = IntegerType::get(8, &ctx);
auto quantizedType = getTestQuantizedType(convertedType, &ctx);
TestUniformQuantizedValueConverter converter(quantizedType);
auto realValue = getTestFloatAttr(1.0, &ctx);
Type typeResult;
auto valueResult =
quantizeAttrUniform(realValue, quantizedType, converter, typeResult);
EXPECT_EQ(valueResult.cast<IntegerAttr>().getInt(), 5);
EXPECT_EQ(
valueResult.cast<IntegerAttr>().getType().cast<IntegerType>().getWidth(),
convertedType.getWidth());
}
TEST(QuantizationUtilsTest, convertRankedDenseAttrUniform) {
MLIRContext ctx;
ctx.getOrLoadDialect<QuantizationDialect>();
IntegerType convertedType = IntegerType::get(8, &ctx);
auto quantizedType = getTestQuantizedType(convertedType, &ctx);
TestUniformQuantizedValueConverter converter(quantizedType);
auto realValue = getTestElementsAttr<DenseElementsAttr, ArrayRef<Attribute>>(
&ctx, {1, 2}, {getTestFloatAttr(1.0, &ctx), getTestFloatAttr(2.0, &ctx)});
Type returnedType;
auto returnedValue =
quantizeAttrUniform(realValue, quantizedType, converter, returnedType);
// Check Elements attribute shape and kind are not changed.
auto tensorType = returnedType.cast<TensorType>();
auto expectedTensorType = realValue.getType().cast<TensorType>();
EXPECT_EQ(tensorType.getShape(), expectedTensorType.getShape());
EXPECT_EQ(tensorType.getElementType(), convertedType);
EXPECT_TRUE(returnedValue.isa<DenseIntElementsAttr>());
// Check Elements attribute element value is expected.
auto firstValue = returnedValue.cast<ElementsAttr>().getValue({0, 0});
EXPECT_EQ(firstValue.cast<IntegerAttr>().getInt(), 5);
}
TEST(QuantizationUtilsTest, convertRankedSplatAttrUniform) {
MLIRContext ctx;
ctx.getOrLoadDialect<QuantizationDialect>();
IntegerType convertedType = IntegerType::get(8, &ctx);
auto quantizedType = getTestQuantizedType(convertedType, &ctx);
TestUniformQuantizedValueConverter converter(quantizedType);
auto realValue = getTestElementsAttr<DenseElementsAttr, Attribute>(
&ctx, {1, 2}, getTestFloatAttr(1.0, &ctx));
Type returnedType;
auto returnedValue =
quantizeAttrUniform(realValue, quantizedType, converter, returnedType);
// Check Elements attribute shape and kind are not changed.
auto tensorType = returnedType.cast<TensorType>();
auto expectedTensorType = realValue.getType().cast<TensorType>();
EXPECT_EQ(tensorType.getShape(), expectedTensorType.getShape());
EXPECT_EQ(tensorType.getElementType(), convertedType);
EXPECT_TRUE(returnedValue.isa<SplatElementsAttr>());
// Check Elements attribute element value is expected.
auto firstValue = returnedValue.cast<ElementsAttr>().getValue({0, 0});
EXPECT_EQ(firstValue.cast<IntegerAttr>().getInt(), 5);
}
TEST(QuantizationUtilsTest, convertRankedSparseAttrUniform) {
MLIRContext ctx;
ctx.getOrLoadDialect<QuantizationDialect>();
IntegerType convertedType = IntegerType::get(8, &ctx);
auto quantizedType = getTestQuantizedType(convertedType, &ctx);
TestUniformQuantizedValueConverter converter(quantizedType);
auto realValue = getTestSparseElementsAttr(&ctx, {1, 2});
Type returnedType;
auto returnedValue =
quantizeAttrUniform(realValue, quantizedType, converter, returnedType);
// Check Elements attribute shape and kind are not changed.
auto tensorType = returnedType.cast<TensorType>();
auto expectedTensorType = realValue.getType().cast<TensorType>();
EXPECT_EQ(tensorType.getShape(), expectedTensorType.getShape());
EXPECT_EQ(tensorType.getElementType(), convertedType);
EXPECT_TRUE(returnedValue.isa<SparseElementsAttr>());
// Check Elements attribute element value is expected.
auto firstValue = returnedValue.cast<ElementsAttr>().getValue({0, 0});
EXPECT_EQ(firstValue.cast<IntegerAttr>().getInt(), 5);
}
} // end namespace