You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1411 lines
67 KiB

/* Microsoft Reference Implementation for TPM 2.0
*
* The copyright in this software is being made available under the BSD License,
* included below. This software may be subject to other third party and
* contributor rights, including patent rights, and no such rights are granted
* under this license.
*
* Copyright (c) Microsoft Corporation
*
* All rights reserved.
*
* BSD License
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ""AS IS""
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
//** Description
// This file contains internal global type definitions and data declarations that
// are need between subsystems. The instantiation of global data is in Global.c.
// The initialization of global data is in the subsystem that is the primary owner
// of the data.
//
// The first part of this file has the 'typedefs' for structures and other defines
// used in many portions of the code. After the 'typedef' section, is a section that
// defines global values that are only present in RAM. The next three sections
// define the structures for the NV data areas: persistent, orderly, and state
// save. Additional sections define the data that is used in specific modules. That
// data is private to the module but is collected here to simplify the management
// of the instance data.
//
// All the data is instanced in Global.c.
#if !defined _TPM_H_
#error "Should only be instanced in TPM.h"
#endif
//** Includes
#ifndef GLOBAL_H
#define GLOBAL_H
_REDUCE_WARNING_LEVEL_(2)
#include <string.h>
#include <stddef.h>
_NORMAL_WARNING_LEVEL_
#include "Capabilities.h"
#include "TpmTypes.h"
#include "CommandAttributes.h"
#include "CryptTest.h"
#include "BnValues.h"
#include "CryptHash.h"
#include "CryptSym.h"
#include "CryptRand.h"
#include "CryptEcc.h"
#include "CryptRsa.h"
#include "CryptTest.h"
#include "TpmError.h"
#include "NV.h"
#include "ACT.h"
//** Defines and Types
//*** Size Types
// These types are used to differentiate the two different size values used.
//
// NUMBYTES is used when a size is a number of bytes (usually a TPM2B)
typedef UINT16 NUMBYTES;
//*** Other Types
// An AUTH_VALUE is a BYTE array containing a digest (TPMU_HA)
typedef BYTE AUTH_VALUE[sizeof(TPMU_HA)];
// A TIME_INFO is a BYTE array that can contain a TPMS_TIME_INFO
typedef BYTE TIME_INFO[sizeof(TPMS_TIME_INFO)];
// A NAME is a BYTE array that can contain a TPMU_NAME
typedef BYTE NAME[sizeof(TPMU_NAME)];
// Definition for a PROOF value
TPM2B_TYPE(PROOF, PROOF_SIZE);
// Definition for a Primary Seed value
TPM2B_TYPE(SEED, PRIMARY_SEED_SIZE);
// A CLOCK_NONCE is used to tag the time value in the authorization session and
// in the ticket computation so that the ticket expires when there is a time
// discontinuity. When the clock stops during normal operation, the nonce is
// 64-bit value kept in RAM but it is a 32-bit counter when the clock only stops
// during power events.
#if CLOCK_STOPS
typedef UINT64 CLOCK_NONCE;
#else
typedef UINT32 CLOCK_NONCE;
#endif
//** Loaded Object Structures
//*** Description
// The structures in this section define the object layout as it exists in TPM
// memory.
//
// Two types of objects are defined: an ordinary object such as a key, and a
// sequence object that may be a hash, HMAC, or event.
//
//*** OBJECT_ATTRIBUTES
// An OBJECT_ATTRIBUTES structure contains the variable attributes of an object.
// These properties are not part of the public properties but are used by the
// TPM in managing the object. An OBJECT_ATTRIBUTES is used in the definition of
// the OBJECT data type.
typedef struct
{
unsigned publicOnly : 1; //0) SET if only the public portion of
// an object is loaded
unsigned epsHierarchy : 1; //1) SET if the object belongs to EPS
// Hierarchy
unsigned ppsHierarchy : 1; //2) SET if the object belongs to PPS
// Hierarchy
unsigned spsHierarchy : 1; //3) SET f the object belongs to SPS
// Hierarchy
unsigned evict : 1; //4) SET if the object is a platform or
// owner evict object. Platform-
// evict object belongs to PPS
// hierarchy, owner-evict object
// belongs to SPS or EPS hierarchy.
// This bit is also used to mark a
// completed sequence object so it
// will be flush when the
// SequenceComplete command succeeds.
unsigned primary : 1; //5) SET for a primary object
unsigned temporary : 1; //6) SET for a temporary object
unsigned stClear : 1; //7) SET for an stClear object
unsigned hmacSeq : 1; //8) SET for an HMAC or MAC sequence
// object
unsigned hashSeq : 1; //9) SET for a hash sequence object
unsigned eventSeq : 1; //10) SET for an event sequence object
unsigned ticketSafe : 1; //11) SET if a ticket is safe to create
// for hash sequence object
unsigned firstBlock : 1; //12) SET if the first block of hash
// data has been received. It
// works with ticketSafe bit
unsigned isParent : 1; //13) SET if the key has the proper
// attributes to be a parent key
// unsigned privateExp : 1; //14) SET when the private exponent
// // of an RSA key has been validated.
unsigned not_used_14 : 1;
unsigned occupied : 1; //15) SET when the slot is occupied.
unsigned derivation : 1; //16) SET when the key is a derivation
// parent
unsigned external : 1; //17) SET when the object is loaded with
// TPM2_LoadExternal();
} OBJECT_ATTRIBUTES;
#if ALG_RSA
// There is an overload of the sensitive.rsa.t.size field of a TPMT_SENSITIVE when an
// RSA key is loaded. When the sensitive->sensitive contains an RSA key with all of
// the CRT values, then the MSB of the size field will be set to indicate that the
// buffer contains all 5 of the CRT private key values.
#define RSA_prime_flag 0x8000
#endif
//*** OBJECT Structure
// An OBJECT structure holds the object public, sensitive, and meta-data
// associated. This structure is implementation dependent. For this
// implementation, the structure is not optimized for space but rather
// for clarity of the reference implementation. Other implementations
// may choose to overlap portions of the structure that are not used
// simultaneously. These changes would necessitate changes to the source
// code but those changes would be compatible with the reference
// implementation.
typedef struct OBJECT
{
// The attributes field is required to be first followed by the publicArea.
// This allows the overlay of the object structure and a sequence structure
OBJECT_ATTRIBUTES attributes; // object attributes
TPMT_PUBLIC publicArea; // public area of an object
TPMT_SENSITIVE sensitive; // sensitive area of an object
TPM2B_NAME qualifiedName; // object qualified name
TPMI_DH_OBJECT evictHandle; // if the object is an evict object,
// the original handle is kept here.
// The 'working' handle will be the
// handle of an object slot.
TPM2B_NAME name; // Name of the object name. Kept here
// to avoid repeatedly computing it.
} OBJECT;
//*** HASH_OBJECT Structure
// This structure holds a hash sequence object or an event sequence object.
//
// The first four components of this structure are manually set to be the same as
// the first four components of the object structure. This prevents the object
// from being inadvertently misused as sequence objects occupy the same memory as
// a regular object. A debug check is present to make sure that the offsets are
// what they are supposed to be.
// NOTE: In a future version, this will probably be renamed as SEQUENCE_OBJECT
typedef struct HASH_OBJECT
{
OBJECT_ATTRIBUTES attributes; // The attributes of the HASH object
TPMI_ALG_PUBLIC type; // algorithm
TPMI_ALG_HASH nameAlg; // name algorithm
TPMA_OBJECT objectAttributes; // object attributes
// The data below is unique to a sequence object
TPM2B_AUTH auth; // authorization for use of sequence
union
{
HASH_STATE hashState[HASH_COUNT];
HMAC_STATE hmacState;
} state;
} HASH_OBJECT;
typedef BYTE HASH_OBJECT_BUFFER[sizeof(HASH_OBJECT)];
//*** ANY_OBJECT
// This is the union for holding either a sequence object or a regular object
// for ContextSave and ContextLoad.
typedef union ANY_OBJECT
{
OBJECT entity;
HASH_OBJECT hash;
} ANY_OBJECT;
typedef BYTE ANY_OBJECT_BUFFER[sizeof(ANY_OBJECT)];
//**AUTH_DUP Types
// These values are used in the authorization processing.
typedef UINT32 AUTH_ROLE;
#define AUTH_NONE ((AUTH_ROLE)(0))
#define AUTH_USER ((AUTH_ROLE)(1))
#define AUTH_ADMIN ((AUTH_ROLE)(2))
#define AUTH_DUP ((AUTH_ROLE)(3))
//** Active Session Context
//*** Description
// The structures in this section define the internal structure of a session
// context.
//
//*** SESSION_ATTRIBUTES
// The attributes in the SESSION_ATTRIBUTES structure track the various properties
// of the session. It maintains most of the tracking state information for the
// policy session. It is used within the SESSION structure.
typedef struct SESSION_ATTRIBUTES
{
unsigned isPolicy : 1; //1) SET if the session may only be used
// for policy
unsigned isAudit : 1; //2) SET if the session is used for audit
unsigned isBound : 1; //3) SET if the session is bound to with an
// entity. This attribute will be CLEAR
// if either isPolicy or isAudit is SET.
unsigned isCpHashDefined : 1; //4) SET if the cpHash has been defined
// This attribute is not SET unless
// 'isPolicy' is SET.
unsigned isAuthValueNeeded : 1; //5) SET if the authValue is required for
// computing the session HMAC. This
// attribute is not SET unless 'isPolicy'
// is SET.
unsigned isPasswordNeeded : 1; //6) SET if a password authValue is required
// for authorization This attribute is not
// SET unless 'isPolicy' is SET.
unsigned isPPRequired : 1; //7) SET if physical presence is required to
// be asserted when the authorization is
// checked. This attribute is not SET
// unless 'isPolicy' is SET.
unsigned isTrialPolicy : 1; //8) SET if the policy session is created
// for trial of the policy's policyHash
// generation. This attribute is not SET
// unless 'isPolicy' is SET.
unsigned isDaBound : 1; //9) SET if the bind entity had noDA CLEAR.
// If this is SET, then an authorization
// failure using this session will count
// against lockout even if the object
// being authorized is exempt from DA.
unsigned isLockoutBound : 1; //10) SET if the session is bound to
// lockoutAuth.
unsigned includeAuth : 1; //11) This attribute is SET when the
// authValue of an object is to be
// included in the computation of the
// HMAC key for the command and response
// computations. (was 'requestWasBound')
unsigned checkNvWritten : 1; //12) SET if the TPMA_NV_WRITTEN attribute
// needs to be checked when the policy is
// used for authorization for NV access.
// If this is SET for any other type, the
// policy will fail.
unsigned nvWrittenState : 1; //13) SET if TPMA_NV_WRITTEN is required to
// be SET. Used when 'checkNvWritten' is
// SET
unsigned isTemplateSet : 1; //14) SET if the templateHash needs to be
// checked for Create, CreatePrimary, or
// CreateLoaded.
} SESSION_ATTRIBUTES;
//*** SESSION Structure
// The SESSION structure contains all the context of a session except for the
// associated contextID.
//
// Note: The contextID of a session is only relevant when the session context
// is stored off the TPM.
typedef struct SESSION
{
SESSION_ATTRIBUTES attributes; // session attributes
UINT32 pcrCounter; // PCR counter value when PCR is
// included (policy session)
// If no PCR is included, this
// value is 0.
UINT64 startTime; // The value in g_time when the session
// was started (policy session)
UINT64 timeout; // The timeout relative to g_time
// There is no timeout if this value
// is 0.
CLOCK_NONCE epoch; // The g_clockEpoch value when the
// session was started. If g_clockEpoch
// does not match this value when the
// timeout is used, then
// then the command will fail.
TPM_CC commandCode; // command code (policy session)
TPM_ALG_ID authHashAlg; // session hash algorithm
TPMA_LOCALITY commandLocality; // command locality (policy session)
TPMT_SYM_DEF symmetric; // session symmetric algorithm (if any)
TPM2B_AUTH sessionKey; // session secret value used for
// this session
TPM2B_NONCE nonceTPM; // last TPM-generated nonce for
// generating HMAC and encryption keys
union
{
TPM2B_NAME boundEntity; // value used to track the entity to
// which the session is bound
TPM2B_DIGEST cpHash; // the required cpHash value for the
// command being authorized
TPM2B_DIGEST nameHash; // the required nameHash
TPM2B_DIGEST templateHash; // the required template for creation
} u1;
union
{
TPM2B_DIGEST auditDigest; // audit session digest
TPM2B_DIGEST policyDigest; // policyHash
} u2; // audit log and policyHash may
// share space to save memory
} SESSION;
#define EXPIRES_ON_RESET INT32_MIN
#define TIMEOUT_ON_RESET UINT64_MAX
#define EXPIRES_ON_RESTART (INT32_MIN + 1)
#define TIMEOUT_ON_RESTART (UINT64_MAX - 1)
typedef BYTE SESSION_BUF[sizeof(SESSION)];
//*********************************************************************************
//** PCR
//*********************************************************************************
//***PCR_SAVE Structure
// The PCR_SAVE structure type contains the PCR data that are saved across power
// cycles. Only the static PCR are required to be saved across power cycles. The
// DRTM and resettable PCR are not saved. The number of static and resettable PCR
// is determined by the platform-specific specification to which the TPM is built.
#define PCR_SAVE_SPACE(HASH, Hash) BYTE Hash[NUM_STATIC_PCR][HASH##_DIGEST_SIZE];
typedef struct PCR_SAVE
{
FOR_EACH_HASH(PCR_SAVE_SPACE)
// This counter increments whenever the PCR are updated.
// NOTE: A platform-specific specification may designate
// certain PCR changes as not causing this counter
// to increment.
UINT32 pcrCounter;
} PCR_SAVE;
//***PCR_POLICY
#if defined NUM_POLICY_PCR_GROUP && NUM_POLICY_PCR_GROUP > 0
// This structure holds the PCR policies, one for each group of PCR controlled
// by policy.
typedef struct PCR_POLICY
{
TPMI_ALG_HASH hashAlg[NUM_POLICY_PCR_GROUP];
TPM2B_DIGEST a;
TPM2B_DIGEST policy[NUM_POLICY_PCR_GROUP];
} PCR_POLICY;
#endif
//***PCR_AUTHVALUE
// This structure holds the PCR policies, one for each group of PCR controlled
// by policy.
typedef struct PCR_AUTH_VALUE
{
TPM2B_DIGEST auth[NUM_AUTHVALUE_PCR_GROUP];
} PCR_AUTHVALUE;
//**STARTUP_TYPE
// This enumeration is the possible startup types. The type is determined
// by the combination of TPM2_ShutDown and TPM2_Startup.
typedef enum
{
SU_RESET,
SU_RESTART,
SU_RESUME
} STARTUP_TYPE;
//**NV
//***NV_INDEX
// The NV_INDEX structure defines the internal format for an NV index.
// The 'indexData' size varies according to the type of the index.
// In this implementation, all of the index is manipulated as a unit.
typedef struct NV_INDEX
{
TPMS_NV_PUBLIC publicArea;
TPM2B_AUTH authValue;
} NV_INDEX;
//*** NV_REF
// An NV_REF is an opaque value returned by the NV subsystem. It is used to
// reference and NV Index in a relatively efficient way. Rather than having to
// continually search for an Index, its reference value may be used. In this
// implementation, an NV_REF is a byte pointer that points to the copy of the
// NV memory that is kept in RAM.
typedef UINT32 NV_REF;
typedef BYTE *NV_RAM_REF;
//***NV_PIN
// This structure deals with the possible endianess differences between the
// canonical form of the TPMS_NV_PIN_COUNTER_PARAMETERS structure and the internal
// value. The structures allow the data in a PIN index to be read as an 8-octet
// value using NvReadUINT64Data(). That function will byte swap all the values on a
// little endian system. This will put the bytes with the 4-octet values in the
// correct order but will swap the pinLimit and pinCount values. When written, the
// PIN index is simply handled as a normal index with the octets in canonical order.
#if BIG_ENDIAN_TPM
typedef struct
{
UINT32 pinCount;
UINT32 pinLimit;
} PIN_DATA;
#else
typedef struct
{
UINT32 pinLimit;
UINT32 pinCount;
} PIN_DATA;
#endif
typedef union
{
UINT64 intVal;
PIN_DATA pin;
} NV_PIN;
//**COMMIT_INDEX_MASK
// This is the define for the mask value that is used when manipulating
// the bits in the commit bit array. The commit counter is a 64-bit
// value and the low order bits are used to index the commitArray.
// This mask value is applied to the commit counter to extract the
// bit number in the array.
#if ALG_ECC
#define COMMIT_INDEX_MASK ((UINT16)((sizeof(gr.commitArray)*8)-1))
#endif
//*****************************************************************************
//*****************************************************************************
//** RAM Global Values
//*****************************************************************************
//*****************************************************************************
//*** Description
// The values in this section are only extant in RAM or ROM as constant values.
//*** Crypto Self-Test Values
EXTERN ALGORITHM_VECTOR g_implementedAlgorithms;
EXTERN ALGORITHM_VECTOR g_toTest;
//*** g_rcIndex[]
// This array is used to contain the array of values that are added to a return
// code when it is a parameter-, handle-, or session-related error.
// This is an implementation choice and the same result can be achieved by using
// a macro.
#define g_rcIndexInitializer { TPM_RC_1, TPM_RC_2, TPM_RC_3, TPM_RC_4, \
TPM_RC_5, TPM_RC_6, TPM_RC_7, TPM_RC_8, \
TPM_RC_9, TPM_RC_A, TPM_RC_B, TPM_RC_C, \
TPM_RC_D, TPM_RC_E, TPM_RC_F }
EXTERN const UINT16 g_rcIndex[15] INITIALIZER(g_rcIndexInitializer);
//*** g_exclusiveAuditSession
// This location holds the session handle for the current exclusive audit
// session. If there is no exclusive audit session, the location is set to
// TPM_RH_UNASSIGNED.
EXTERN TPM_HANDLE g_exclusiveAuditSession;
//*** g_time
// This is the value in which we keep the current command time. This is initialized
// at the start of each command. The time is the accumulated time since the last
// time that the TPM's timer was last powered up. Clock is the accumulated time
// since the last time that the TPM was cleared. g_time is in mS.
EXTERN UINT64 g_time;
//*** g_timeEpoch
// This value contains the current clock Epoch. It changes when there is a clock
// discontinuity. It may be necessary to place this in NV should the timer be able
// to run across a power down of the TPM but not in all cases (e.g. dead battery).
// If the nonce is placed in NV, it should go in gp because it should be changing
// slowly.
#if CLOCK_STOPS
EXTERN CLOCK_NONCE g_timeEpoch;
#else
#define g_timeEpoch gp.timeEpoch
#endif
//*** g_phEnable
// This is the platform hierarchy control and determines if the platform hierarchy
// is available. This value is SET on each TPM2_Startup(). The default value is
// SET.
EXTERN BOOL g_phEnable;
//*** g_pcrReConfig
// This value is SET if a TPM2_PCR_Allocate command successfully executed since
// the last TPM2_Startup(). If so, then the next shutdown is required to be
// Shutdown(CLEAR).
EXTERN BOOL g_pcrReConfig;
//*** g_DRTMHandle
// This location indicates the sequence object handle that holds the DRTM
// sequence data. When not used, it is set to TPM_RH_UNASSIGNED. A sequence
// DRTM sequence is started on either _TPM_Init or _TPM_Hash_Start.
EXTERN TPMI_DH_OBJECT g_DRTMHandle;
//*** g_DrtmPreStartup
// This value indicates that an H-CRTM occurred after _TPM_Init but before
// TPM2_Startup(). The define for PRE_STARTUP_FLAG is used to add the
// g_DrtmPreStartup value to gp_orderlyState at shutdown. This hack is to avoid
// adding another NV variable.
EXTERN BOOL g_DrtmPreStartup;
//*** g_StartupLocality3
// This value indicates that a TPM2_Startup() occurred at locality 3. Otherwise, it
// at locality 0. The define for STARTUP_LOCALITY_3 is to
// indicate that the startup was not at locality 0. This hack is to avoid
// adding another NV variable.
EXTERN BOOL g_StartupLocality3;
//***TPM_SU_NONE
// Part 2 defines the two shutdown/startup types that may be used in
// TPM2_Shutdown() and TPM2_Starup(). This additional define is
// used by the TPM to indicate that no shutdown was received.
// NOTE: This is a reserved value.
#define SU_NONE_VALUE (0xFFFF)
#define TPM_SU_NONE (TPM_SU)(SU_NONE_VALUE)
//*** TPM_SU_DA_USED
// As with TPM_SU_NONE, this value is added to allow indication that the shutdown
// was not orderly and that a DA=protected object was reference during the previous
// cycle.
#define SU_DA_USED_VALUE (SU_NONE_VALUE - 1)
#define TPM_SU_DA_USED (TPM_SU)(SU_DA_USED_VALUE)
//*** Startup Flags
// These flags are included in gp.orderlyState. These are hacks and are being
// used to avoid having to change the layout of gp. The PRE_STARTUP_FLAG indicates
// that a _TPM_Hash_Start/_Data/_End sequence was received after _TPM_Init but
// before TPM2_StartUp(). STARTUP_LOCALITY_3 indicates that the last TPM2_Startup()
// was received at locality 3. These flags are only relevant if after a
// TPM2_Shutdown(STATE).
#define PRE_STARTUP_FLAG 0x8000
#define STARTUP_LOCALITY_3 0x4000
#if USE_DA_USED
//*** g_daUsed
// This location indicates if a DA-protected value is accessed during a boot
// cycle. If none has, then there is no need to increment 'failedTries' on the
// next non-orderly startup. This bit is merged with gp.orderlyState when
// gp.orderly is set to SU_NONE_VALUE
EXTERN BOOL g_daUsed;
#endif
//*** g_updateNV
// This flag indicates if NV should be updated at the end of a command.
// This flag is set to UT_NONE at the beginning of each command in ExecuteCommand().
// This flag is checked in ExecuteCommand() after the detailed actions of a command
// complete. If the command execution was successful and this flag is not UT_NONE,
// any pending NV writes will be committed to NV.
// UT_ORDERLY causes any RAM data to be written to the orderly space for staging
// the write to NV.
typedef BYTE UPDATE_TYPE;
#define UT_NONE (UPDATE_TYPE)0
#define UT_NV (UPDATE_TYPE)1
#define UT_ORDERLY (UPDATE_TYPE)(UT_NV + 2)
EXTERN UPDATE_TYPE g_updateNV;
//*** g_powerWasLost
// This flag is used to indicate if the power was lost. It is SET in _TPM__Init.
// This flag is cleared by TPM2_Startup() after all power-lost activities are
// completed.
// Note: When power is applied, this value can come up as anything. However,
// _plat__WasPowerLost() will provide the proper indication in that case. So, when
// power is actually lost, we get the correct answer. When power was not lost, but
// the power-lost processing has not been completed before the next _TPM_Init(),
// then the TPM still does the correct thing.
EXTERN BOOL g_powerWasLost;
//*** g_clearOrderly
// This flag indicates if the execution of a command should cause the orderly
// state to be cleared. This flag is set to FALSE at the beginning of each
// command in ExecuteCommand() and is checked in ExecuteCommand() after the
// detailed actions of a command complete but before the check of
// 'g_updateNV'. If this flag is TRUE, and the orderly state is not
// SU_NONE_VALUE, then the orderly state in NV memory will be changed to
// SU_NONE_VALUE or SU_DA_USED_VALUE.
EXTERN BOOL g_clearOrderly;
//*** g_prevOrderlyState
// This location indicates how the TPM was shut down before the most recent
// TPM2_Startup(). This value, along with the startup type, determines if
// the TPM should do a TPM Reset, TPM Restart, or TPM Resume.
EXTERN TPM_SU g_prevOrderlyState;
//*** g_nvOk
// This value indicates if the NV integrity check was successful or not. If not and
// the failure was severe, then the TPM would have been put into failure mode after
// it had been re-manufactured. If the NV failure was in the area where the state-save
// data is kept, then this variable will have a value of FALSE indicating that
// a TPM2_Startup(CLEAR) is required.
EXTERN BOOL g_nvOk;
// NV availability is sampled as the start of each command and stored here
// so that its value remains consistent during the command execution
EXTERN TPM_RC g_NvStatus;
//*** g_platformUnique
// This location contains the unique value(s) used to identify the TPM. It is
// loaded on every _TPM2_Startup()
// The first value is used to seed the RNG. The second value is used as a vendor
// authValue. The value used by the RNG would be the value derived from the
// chip unique value (such as fused) with a dependency on the authorities of the
// code in the TPM boot path. The second would be derived from the chip unique value
// with a dependency on the details of the code in the boot path. That is, the
// first value depends on the various signers of the code and the second depends on
// what was signed. The TPM vendor should not be able to know the first value but
// they are expected to know the second.
EXTERN TPM2B_AUTH g_platformUniqueAuthorities; // Reserved for RNG
EXTERN TPM2B_AUTH g_platformUniqueDetails; // referenced by VENDOR_PERMANENT
//*********************************************************************************
//*********************************************************************************
//** Persistent Global Values
//*********************************************************************************
//*********************************************************************************
//*** Description
// The values in this section are global values that are persistent across power
// events. The lifetime of the values determines the structure in which the value
// is placed.
//*********************************************************************************
//*** PERSISTENT_DATA
//*********************************************************************************
// This structure holds the persistent values that only change as a consequence
// of a specific Protected Capability and are not affected by TPM power events
// (TPM2_Startup() or TPM2_Shutdown().
typedef struct
{
//*********************************************************************************
// Hierarchy
//*********************************************************************************
// The values in this section are related to the hierarchies.
BOOL disableClear; // TRUE if TPM2_Clear() using
// lockoutAuth is disabled
// Hierarchy authPolicies
TPMI_ALG_HASH ownerAlg;
TPMI_ALG_HASH endorsementAlg;
TPMI_ALG_HASH lockoutAlg;
TPM2B_DIGEST ownerPolicy;
TPM2B_DIGEST endorsementPolicy;
TPM2B_DIGEST lockoutPolicy;
// Hierarchy authValues
TPM2B_AUTH ownerAuth;
TPM2B_AUTH endorsementAuth;
TPM2B_AUTH lockoutAuth;
// Primary Seeds
TPM2B_SEED EPSeed;
TPM2B_SEED SPSeed;
TPM2B_SEED PPSeed;
// Note there is a nullSeed in the state_reset memory.
// Hierarchy proofs
TPM2B_PROOF phProof;
TPM2B_PROOF shProof;
TPM2B_PROOF ehProof;
// Note there is a nullProof in the state_reset memory.
//*********************************************************************************
// Reset Events
//*********************************************************************************
// A count that increments at each TPM reset and never get reset during the life
// time of TPM. The value of this counter is initialized to 1 during TPM
// manufacture process. It is used to invalidate all saved contexts after a TPM
// Reset.
UINT64 totalResetCount;
// This counter increments on each TPM Reset. The counter is reset by
// TPM2_Clear().
UINT32 resetCount;
//*********************************************************************************
// PCR
//*********************************************************************************
// This structure hold the policies for those PCR that have an update policy.
// This implementation only supports a single group of PCR controlled by
// policy. If more are required, then this structure would be changed to
// an array.
#if defined NUM_POLICY_PCR_GROUP && NUM_POLICY_PCR_GROUP > 0
PCR_POLICY pcrPolicies;
#endif
// This structure indicates the allocation of PCR. The structure contains a
// list of PCR allocations for each implemented algorithm. If no PCR are
// allocated for an algorithm, a list entry still exists but the bit map
// will contain no SET bits.
TPML_PCR_SELECTION pcrAllocated;
//*********************************************************************************
// Physical Presence
//*********************************************************************************
// The PP_LIST type contains a bit map of the commands that require physical
// to be asserted when the authorization is evaluated. Physical presence will be
// checked if the corresponding bit in the array is SET and if the authorization
// handle is TPM_RH_PLATFORM.
//
// These bits may be changed with TPM2_PP_Commands().
BYTE ppList[(COMMAND_COUNT + 7) / 8];
//*********************************************************************************
// Dictionary attack values
//*********************************************************************************
// These values are used for dictionary attack tracking and control.
UINT32 failedTries; // the current count of unexpired
// authorization failures
UINT32 maxTries; // number of unexpired authorization
// failures before the TPM is in
// lockout
UINT32 recoveryTime; // time between authorization failures
// before failedTries is decremented
UINT32 lockoutRecovery; // time that must expire between
// authorization failures associated
// with lockoutAuth
BOOL lockOutAuthEnabled; // TRUE if use of lockoutAuth is
// allowed
//*****************************************************************************
// Orderly State
//*****************************************************************************
// The orderly state for current cycle
TPM_SU orderlyState;
//*****************************************************************************
// Command audit values.
//*****************************************************************************
BYTE auditCommands[((COMMAND_COUNT + 1) + 7) / 8];
TPMI_ALG_HASH auditHashAlg;
UINT64 auditCounter;
//*****************************************************************************
// Algorithm selection
//*****************************************************************************
//
// The 'algorithmSet' value indicates the collection of algorithms that are
// currently in used on the TPM. The interpretation of value is vendor dependent.
UINT32 algorithmSet;
//*****************************************************************************
// Firmware version
//*****************************************************************************
// The firmwareV1 and firmwareV2 values are instanced in TimeStamp.c. This is
// a scheme used in development to allow determination of the linker build time
// of the TPM. An actual implementation would implement these values in a way that
// is consistent with vendor needs. The values are maintained in RAM for simplified
// access with a master version in NV. These values are modified in a
// vendor-specific way.
// g_firmwareV1 contains the more significant 32-bits of the vendor version number.
// In the reference implementation, if this value is printed as a hex
// value, it will have the format of YYYYMMDD
UINT32 firmwareV1;
// g_firmwareV1 contains the less significant 32-bits of the vendor version number.
// In the reference implementation, if this value is printed as a hex
// value, it will have the format of 00 HH MM SS
UINT32 firmwareV2;
//*****************************************************************************
// Timer Epoch
//*****************************************************************************
// timeEpoch contains a nonce that has a vendor=specific size (should not be
// less than 8 bytes. This nonce changes when the clock epoch changes. The clock
// epoch changes when there is a discontinuity in the timing of the TPM.
#if !CLOCK_STOPS
CLOCK_NONCE timeEpoch;
#endif
} PERSISTENT_DATA;
EXTERN PERSISTENT_DATA gp;
//*********************************************************************************
//*********************************************************************************
//*** ORDERLY_DATA
//*********************************************************************************
//*********************************************************************************
// The data in this structure is saved to NV on each TPM2_Shutdown().
typedef struct orderly_data
{
//*****************************************************************************
// TIME
//*****************************************************************************
// Clock has two parts. One is the state save part and one is the NV part. The
// state save version is updated on each command. When the clock rolls over, the
// NV version is updated. When the TPM starts up, if the TPM was shutdown in and
// orderly way, then the sClock value is used to initialize the clock. If the
// TPM shutdown was not orderly, then the persistent value is used and the safe
// attribute is clear.
UINT64 clock; // The orderly version of clock
TPMI_YES_NO clockSafe; // Indicates if the clock value is
// safe.
// In many implementations, the quality of the entropy available is not that
// high. To compensate, the current value of the drbgState can be saved and
// restored on each power cycle. This prevents the internal state from reverting
// to the initial state on each power cycle and starting with a limited amount
// of entropy. By keeping the old state and adding entropy, the entropy will
// accumulate.
DRBG_STATE drbgState;
// These values allow the accumulation of self-healing time across orderly shutdown
// of the TPM.
#if ACCUMULATE_SELF_HEAL_TIMER
UINT64 selfHealTimer; // current value of s_selfHealTimer
UINT64 lockoutTimer; // current value of s_lockoutTimer
UINT64 time; // current value of g_time at shutdown
#endif // ACCUMULATE_SELF_HEAL_TIMER
// These are the ACT Timeout values. They are saved with the other timers
#define DefineActData(N) ACT_STATE ACT_##N;
FOR_EACH_ACT(DefineActData)
// this is the 'signaled' attribute data for all the ACT. It is done this way so
// that they can be manipulated by ACT number rather than having to access a
// structure.
UINT16 signaledACT;
UINT16 preservedSignaled;
} ORDERLY_DATA;
#if ACCUMULATE_SELF_HEAL_TIMER
#define s_selfHealTimer go.selfHealTimer
#define s_lockoutTimer go.lockoutTimer
#endif // ACCUMULATE_SELF_HEAL_TIMER
# define drbgDefault go.drbgState
EXTERN ORDERLY_DATA go;
//*********************************************************************************
//*********************************************************************************
//*** STATE_CLEAR_DATA
//*********************************************************************************
//*********************************************************************************
// This structure contains the data that is saved on Shutdown(STATE)
// and restored on Startup(STATE). The values are set to their default
// settings on any Startup(Clear). In other words, the data is only persistent
// across TPM Resume.
//
// If the comments associated with a parameter indicate a default reset value, the
// value is applied on each Startup(CLEAR).
typedef struct state_clear_data
{
//*****************************************************************************
// Hierarchy Control
//*****************************************************************************
BOOL shEnable; // default reset is SET
BOOL ehEnable; // default reset is SET
BOOL phEnableNV; // default reset is SET
TPMI_ALG_HASH platformAlg; // default reset is TPM_ALG_NULL
TPM2B_DIGEST platformPolicy; // default reset is an Empty Buffer
TPM2B_AUTH platformAuth; // default reset is an Empty Buffer
//*****************************************************************************
// PCR
//*****************************************************************************
// The set of PCR to be saved on Shutdown(STATE)
PCR_SAVE pcrSave; // default reset is 0...0
// This structure hold the authorization values for those PCR that have an
// update authorization.
// This implementation only supports a single group of PCR controlled by
// authorization. If more are required, then this structure would be changed to
// an array.
PCR_AUTHVALUE pcrAuthValues;
//*****************************************************************************
// ACT
//*****************************************************************************
#define DefineActPolicySpace(N) TPMT_HA act_##N;
FOR_EACH_ACT(DefineActPolicySpace)
} STATE_CLEAR_DATA;
EXTERN STATE_CLEAR_DATA gc;
//*********************************************************************************
//*********************************************************************************
//*** State Reset Data
//*********************************************************************************
//*********************************************************************************
// This structure contains data is that is saved on Shutdown(STATE) and restored on
// the subsequent Startup(ANY). That is, the data is preserved across TPM Resume
// and TPM Restart.
//
// If a default value is specified in the comments this value is applied on
// TPM Reset.
typedef struct state_reset_data
{
//*****************************************************************************
// Hierarchy Control
//*****************************************************************************
TPM2B_PROOF nullProof; // The proof value associated with
// the TPM_RH_NULL hierarchy. The
// default reset value is from the RNG.
TPM2B_SEED nullSeed; // The seed value for the TPM_RN_NULL
// hierarchy. The default reset value
// is from the RNG.
//*****************************************************************************
// Context
//*****************************************************************************
// The 'clearCount' counter is incremented each time the TPM successfully executes
// a TPM Resume. The counter is included in each saved context that has 'stClear'
// SET (including descendants of keys that have 'stClear' SET). This prevents these
// objects from being loaded after a TPM Resume.
// If 'clearCount' is at its maximum value when the TPM receives a Shutdown(STATE),
// the TPM will return TPM_RC_RANGE and the TPM will only accept Shutdown(CLEAR).
UINT32 clearCount; // The default reset value is 0.
UINT64 objectContextID; // This is the context ID for a saved
// object context. The default reset
// value is 0.
CONTEXT_SLOT contextArray[MAX_ACTIVE_SESSIONS]; // This array contains
// contains the values used to track
// the version numbers of saved
// contexts (see
// Session.c in for details). The
// default reset value is {0}.
CONTEXT_COUNTER contextCounter; // This is the value from which the
// 'contextID' is derived. The
// default reset value is {0}.
//*****************************************************************************
// Command Audit
//*****************************************************************************
// When an audited command completes, ExecuteCommand() checks the return
// value. If it is TPM_RC_SUCCESS, and the command is an audited command, the
// TPM will extend the cpHash and rpHash for the command to this value. If this
// digest was the Zero Digest before the cpHash was extended, the audit counter
// is incremented.
TPM2B_DIGEST commandAuditDigest; // This value is set to an Empty Digest
// by TPM2_GetCommandAuditDigest() or a
// TPM Reset.
//*****************************************************************************
// Boot counter
//*****************************************************************************
UINT32 restartCount; // This counter counts TPM Restarts.
// The default reset value is 0.
//*********************************************************************************
// PCR
//*********************************************************************************
// This counter increments whenever the PCR are updated. This counter is preserved
// across TPM Resume even though the PCR are not preserved. This is because
// sessions remain active across TPM Restart and the count value in the session
// is compared to this counter so this counter must have values that are unique
// as long as the sessions are active.
// NOTE: A platform-specific specification may designate that certain PCR changes
// do not increment this counter to increment.
UINT32 pcrCounter; // The default reset value is 0.
#if ALG_ECC
//*****************************************************************************
// ECDAA
//*****************************************************************************
UINT64 commitCounter; // This counter increments each time
// TPM2_Commit() returns
// TPM_RC_SUCCESS. The default reset
// value is 0.
TPM2B_NONCE commitNonce; // This random value is used to compute
// the commit values. The default reset
// value is from the RNG.
// This implementation relies on the number of bits in g_commitArray being a
// power of 2 (8, 16, 32, 64, etc.) and no greater than 64K.
BYTE commitArray[16]; // The default reset value is {0}.
#endif // ALG_ECC
} STATE_RESET_DATA;
EXTERN STATE_RESET_DATA gr;
//** NV Layout
// The NV data organization is
// 1) a PERSISTENT_DATA structure
// 2) a STATE_RESET_DATA structure
// 3) a STATE_CLEAR_DATA structure
// 4) an ORDERLY_DATA structure
// 5) the user defined NV index space
#define NV_PERSISTENT_DATA (0)
#define NV_STATE_RESET_DATA (NV_PERSISTENT_DATA + sizeof(PERSISTENT_DATA))
#define NV_STATE_CLEAR_DATA (NV_STATE_RESET_DATA + sizeof(STATE_RESET_DATA))
#define NV_ORDERLY_DATA (NV_STATE_CLEAR_DATA + sizeof(STATE_CLEAR_DATA))
#define NV_INDEX_RAM_DATA (NV_ORDERLY_DATA + sizeof(ORDERLY_DATA))
#define NV_USER_DYNAMIC (NV_INDEX_RAM_DATA + sizeof(s_indexOrderlyRam))
#define NV_USER_DYNAMIC_END NV_MEMORY_SIZE
//** Global Macro Definitions
// The NV_READ_PERSISTENT and NV_WRITE_PERSISTENT macros are used to access members
// of the PERSISTENT_DATA structure in NV.
#define NV_READ_PERSISTENT(to, from) \
NvRead(&to, offsetof(PERSISTENT_DATA, from), sizeof(to))
#define NV_WRITE_PERSISTENT(to, from) \
NvWrite(offsetof(PERSISTENT_DATA, to), sizeof(gp.to), &from)
#define CLEAR_PERSISTENT(item) \
NvClearPersistent(offsetof(PERSISTENT_DATA, item), sizeof(gp.item))
#define NV_SYNC_PERSISTENT(item) NV_WRITE_PERSISTENT(item, gp.item)
// At the start of command processing, the index of the command is determined. This
// index value is used to access the various data tables that contain per-command
// information. There are multiple options for how the per-command tables can be
// implemented. This is resolved in GetClosestCommandIndex().
typedef UINT16 COMMAND_INDEX;
#define UNIMPLEMENTED_COMMAND_INDEX ((COMMAND_INDEX)(~0))
typedef struct _COMMAND_FLAGS_
{
unsigned trialPolicy : 1; //1) If SET, one of the handles references a
// trial policy and authorization may be
// skipped. This is only allowed for a policy
// command.
} COMMAND_FLAGS;
// This structure is used to avoid having to manage a large number of
// parameters being passed through various levels of the command input processing.
//
// The following macros are used to define the space for the CP and RP hashes. Space,
// is provided for each implemented hash algorithm because it is not known what the
// caller may use.
#define CP_HASH(HASH, Hash) TPM2B_##HASH##_DIGEST Hash##CpHash;
#define RP_HASH(HASH, Hash) TPM2B_##HASH##_DIGEST Hash##RpHash;
typedef struct COMMAND
{
TPM_ST tag; // the parsed command tag
TPM_CC code; // the parsed command code
COMMAND_INDEX index; // the computed command index
UINT32 handleNum; // the number of entity handles in the
// handle area of the command
TPM_HANDLE handles[MAX_HANDLE_NUM]; // the parsed handle values
UINT32 sessionNum; // the number of sessions found
INT32 parameterSize; // starts out with the parsed command size
// and is reduced and values are
// unmarshaled. Just before calling the
// command actions, this should be zero.
// After the command actions, this number
// should grow as values are marshaled
// in to the response buffer.
INT32 authSize; // this is initialized with the parsed size
// of authorizationSize field and should
// be zero when the authorizations are
// parsed.
BYTE *parameterBuffer; // input to ExecuteCommand
BYTE *responseBuffer; // input to ExecuteCommand
FOR_EACH_HASH(CP_HASH) // space for the CP hashes
FOR_EACH_HASH(RP_HASH) // space for the RP hashes
} COMMAND;
// Global string constants for consistency in KDF function calls.
// These string constants are shared across functions to make sure that they
// are all using consistent string values.
#define STRING_INITIALIZER(value) {{sizeof(value), {value}}}
#define TPM2B_STRING(name, value) \
typedef union name##_ { \
struct { \
UINT16 size; \
BYTE buffer[sizeof(value)]; \
} t; \
TPM2B b; \
} TPM2B_##name##_; \
EXTERN const TPM2B_##name##_ name##_ INITIALIZER(STRING_INITIALIZER(value)); \
EXTERN const TPM2B *name INITIALIZER(&name##_.b)
TPM2B_STRING(PRIMARY_OBJECT_CREATION, "Primary Object Creation");
TPM2B_STRING(CFB_KEY, "CFB");
TPM2B_STRING(CONTEXT_KEY, "CONTEXT");
TPM2B_STRING(INTEGRITY_KEY, "INTEGRITY");
TPM2B_STRING(SECRET_KEY, "SECRET");
TPM2B_STRING(SESSION_KEY, "ATH");
TPM2B_STRING(STORAGE_KEY, "STORAGE");
TPM2B_STRING(XOR_KEY, "XOR");
TPM2B_STRING(COMMIT_STRING, "ECDAA Commit");
TPM2B_STRING(DUPLICATE_STRING, "DUPLICATE");
TPM2B_STRING(IDENTITY_STRING, "IDENTITY");
TPM2B_STRING(OBFUSCATE_STRING, "OBFUSCATE");
#if SELF_TEST
TPM2B_STRING(OAEP_TEST_STRING, "OAEP Test Value");
#endif // SELF_TEST
//*****************************************************************************
//** From CryptTest.c
//*****************************************************************************
// This structure contains the self-test state values for the cryptographic modules.
EXTERN CRYPTO_SELF_TEST_STATE g_cryptoSelfTestState;
//*****************************************************************************
//** From Manufacture.c
//*****************************************************************************
EXTERN BOOL g_manufactured INITIALIZER(FALSE);
// This value indicates if a TPM2_Startup commands has been
// receive since the power on event. This flag is maintained in power
// simulation module because this is the only place that may reliably set this
// flag to FALSE.
EXTERN BOOL g_initialized;
//** Private data
//*****************************************************************************
//*** From SessionProcess.c
//*****************************************************************************
#if defined SESSION_PROCESS_C || defined GLOBAL_C || defined MANUFACTURE_C
// The following arrays are used to save command sessions information so that the
// command handle/session buffer does not have to be preserved for the duration of
// the command. These arrays are indexed by the session index in accordance with
// the order of sessions in the session area of the command.
//
// Array of the authorization session handles
EXTERN TPM_HANDLE s_sessionHandles[MAX_SESSION_NUM];
// Array of authorization session attributes
EXTERN TPMA_SESSION s_attributes[MAX_SESSION_NUM];
// Array of handles authorized by the corresponding authorization sessions;
// and if none, then TPM_RH_UNASSIGNED value is used
EXTERN TPM_HANDLE s_associatedHandles[MAX_SESSION_NUM];
// Array of nonces provided by the caller for the corresponding sessions
EXTERN TPM2B_NONCE s_nonceCaller[MAX_SESSION_NUM];
// Array of authorization values (HMAC's or passwords) for the corresponding
// sessions
EXTERN TPM2B_AUTH s_inputAuthValues[MAX_SESSION_NUM];
// Array of pointers to the SESSION structures for the sessions in a command
EXTERN SESSION *s_usedSessions[MAX_SESSION_NUM];
// Special value to indicate an undefined session index
#define UNDEFINED_INDEX (0xFFFF)
// Index of the session used for encryption of a response parameter
EXTERN UINT32 s_encryptSessionIndex;
// Index of the session used for decryption of a command parameter
EXTERN UINT32 s_decryptSessionIndex;
// Index of a session used for audit
EXTERN UINT32 s_auditSessionIndex;
// The cpHash for command audit
#ifdef TPM_CC_GetCommandAuditDigest
EXTERN TPM2B_DIGEST s_cpHashForCommandAudit;
#endif
// Flag indicating if NV update is pending for the lockOutAuthEnabled or
// failedTries DA parameter
EXTERN BOOL s_DAPendingOnNV;
#endif // SESSION_PROCESS_C
//*****************************************************************************
//*** From DA.c
//*****************************************************************************
#if defined DA_C || defined GLOBAL_C || defined MANUFACTURE_C
// This variable holds the accumulated time since the last time
// that 'failedTries' was decremented. This value is in millisecond.
#if !ACCUMULATE_SELF_HEAL_TIMER
EXTERN UINT64 s_selfHealTimer;
// This variable holds the accumulated time that the lockoutAuth has been
// blocked.
EXTERN UINT64 s_lockoutTimer;
#endif // ACCUMULATE_SELF_HEAL_TIMER
#endif // DA_C
//*****************************************************************************
//*** From NV.c
//*****************************************************************************
#if defined NV_C || defined GLOBAL_C
// This marks the end of the NV area. This is a run-time variable as it might
// not be compile-time constant.
EXTERN NV_REF s_evictNvEnd;
// This space is used to hold the index data for an orderly Index. It also contains
// the attributes for the index.
EXTERN BYTE s_indexOrderlyRam[RAM_INDEX_SPACE]; // The orderly NV Index data
// This value contains the current max counter value. It is written to the end of
// allocatable NV space each time an index is deleted or added. This value is
// initialized on Startup. The indices are searched and the maximum of all the
// current counter indices and this value is the initial value for this.
EXTERN UINT64 s_maxCounter;
// This is space used for the NV Index cache. As with a persistent object, the
// contents of a referenced index are copied into the cache so that the
// NV Index memory scanning and data copying can be reduced.
// Only code that operates on NV Index data should use this cache directly. When
// that action code runs, s_lastNvIndex will contain the index header information.
// It will have been loaded when the handles were verified.
// NOTE: An NV index handle can appear in many commands that do not operate on the
// NV data (e.g. TPM2_StartAuthSession). However, only one NV Index at a time is
// ever directly referenced by any command. If that changes, then the NV Index
// caching needs to be changed to accommodate that. Currently, the code will verify
// that only one NV Index is referenced by the handles of the command.
EXTERN NV_INDEX s_cachedNvIndex;
EXTERN NV_REF s_cachedNvRef;
EXTERN BYTE *s_cachedNvRamRef;
// Initial NV Index/evict object iterator value
#define NV_REF_INIT (NV_REF)0xFFFFFFFF
#endif
//*****************************************************************************
//*** From Object.c
//*****************************************************************************
#if defined OBJECT_C || defined GLOBAL_C
// This type is the container for an object.
EXTERN OBJECT s_objects[MAX_LOADED_OBJECTS];
#endif // OBJECT_C
//*****************************************************************************
//*** From PCR.c
//*****************************************************************************
#if defined PCR_C || defined GLOBAL_C
// The following macro is used to define the per-implemented-hash space. This
// implementation reserves space for all implemented hashes.
#define PCR_ALL_HASH(HASH, Hash) BYTE Hash##Pcr[HASH##_DIGEST_SIZE];
typedef struct
{
FOR_EACH_HASH(PCR_ALL_HASH)
} PCR;
typedef struct
{
unsigned int stateSave : 1; // if the PCR value should be
// saved in state save
unsigned int resetLocality : 5; // The locality that the PCR
// can be reset
unsigned int extendLocality : 5; // The locality that the PCR
// can be extend
} PCR_Attributes;
EXTERN PCR s_pcrs[IMPLEMENTATION_PCR];
#endif // PCR_C
//*****************************************************************************
//*** From Session.c
//*****************************************************************************
#if defined SESSION_C || defined GLOBAL_C
// Container for HMAC or policy session tracking information
typedef struct
{
BOOL occupied;
SESSION session; // session structure
} SESSION_SLOT;
EXTERN SESSION_SLOT s_sessions[MAX_LOADED_SESSIONS];
// The index in contextArray that has the value of the oldest saved session
// context. When no context is saved, this will have a value that is greater
// than or equal to MAX_ACTIVE_SESSIONS.
EXTERN UINT32 s_oldestSavedSession;
// The number of available session slot openings. When this is 1,
// a session can't be created or loaded if the GAP is maxed out.
// The exception is that the oldest saved session context can always
// be loaded (assuming that there is a space in memory to put it)
EXTERN int s_freeSessionSlots;
#endif // SESSION_C
//*****************************************************************************
//*** From IoBuffers.c
//*****************************************************************************
#if defined IO_BUFFER_C || defined GLOBAL_C
// Each command function is allowed a structure for the inputs to the function and
// a structure for the outputs. The command dispatch code unmarshals the input butter
// to the command action input structure starting at the first byte of
// s_actionIoBuffer. The value of s_actionIoAllocation is the number of UINT64 values
// allocated. It is used to set the pointer for the response structure. The command
// dispatch code will marshal the response values into the final output buffer.
EXTERN UINT64 s_actionIoBuffer[768]; // action I/O buffer
EXTERN UINT32 s_actionIoAllocation; // number of UIN64 allocated for the
// action input structure
#endif // IO_BUFFER_C
//*****************************************************************************
//*** From TPMFail.c
//*****************************************************************************
// This value holds the address of the string containing the name of the function
// in which the failure occurred. This address value is not useful for anything
// other than helping the vendor to know in which file the failure occurred.
EXTERN BOOL g_inFailureMode; // Indicates that the TPM is in failure mode
#if SIMULATION
EXTERN BOOL g_forceFailureMode; // flag to force failure mode during test
#endif
typedef void(FailFunction)(const char *function, int line, int code);
#if defined TPM_FAIL_C || defined GLOBAL_C
EXTERN UINT32 s_failFunction;
EXTERN UINT32 s_failLine; // the line in the file at which
// the error was signaled
EXTERN UINT32 s_failCode; // the error code used
EXTERN FailFunction *LibFailCallback;
#endif // TPM_FAIL_C
//*****************************************************************************
//*** From ACT_spt.c
//*****************************************************************************
// This value is used to indicate if an ACT has been updated since the last
// TPM2_Startup() (one bit for each ACT). If the ACT is not updated
// (TPM2_ACT_SetTimeout()) after a startup, then on each TPM2_Shutdown() the TPM will
// save 1/2 of the current timer value. This prevents an attack on the ACT by saving
// the counter and then running for a long period of time before doing a TPM Restart.
// A quick TPM2_Shutdown() after each
EXTERN UINT16 s_ActUpdated;
//*****************************************************************************
//*** From CommandCodeAttributes.c
//*****************************************************************************
// This array is instanced in CommandCodeAttributes.c when it includes
// CommandCodeAttributes.h. Don't change the extern to EXTERN.
extern const TPMA_CC s_ccAttr[];
extern const COMMAND_ATTRIBUTES s_commandAttributes[];
#endif // GLOBAL_H