You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

729 lines
23 KiB

.. hazmat::
RSA
===
.. module:: cryptography.hazmat.primitives.asymmetric.rsa
`RSA`_ is a `public-key`_ algorithm for encrypting and signing messages.
Generation
~~~~~~~~~~
Unlike symmetric cryptography, where the key is typically just a random series
of bytes, RSA keys have a complex internal structure with `specific
mathematical properties`_.
.. function:: generate_private_key(public_exponent, key_size, backend)
.. versionadded:: 0.5
Generates a new RSA private key using the provided ``backend``.
``key_size`` describes how many :term:`bits` long the key should be. Larger
keys provide more security; currently ``1024`` and below are considered
breakable while ``2048`` or ``4096`` are reasonable default key sizes for
new keys. The ``public_exponent`` indicates what one mathematical property
of the key generation will be. Unless you have a specific reason to do
otherwise, you should always `use 65537`_.
.. doctest::
>>> from cryptography.hazmat.backends import default_backend
>>> from cryptography.hazmat.primitives.asymmetric import rsa
>>> private_key = rsa.generate_private_key(
... public_exponent=65537,
... key_size=2048,
... backend=default_backend()
... )
:param int public_exponent: The public exponent of the new key.
Usually one of the small Fermat primes 3, 5, 17, 257, 65537. If in
doubt you should `use 65537`_.
:param int key_size: The length of the modulus in :term:`bits`. For keys
generated in 2015 it is strongly recommended to be
`at least 2048`_ (See page 41). It must not be less than 512.
Some backends may have additional limitations.
:param backend: A backend which implements
:class:`~cryptography.hazmat.backends.interfaces.RSABackend`.
:return: An instance of
:class:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateKey`.
:raises cryptography.exceptions.UnsupportedAlgorithm: This is raised if
the provided ``backend`` does not implement
:class:`~cryptography.hazmat.backends.interfaces.RSABackend`
Key loading
~~~~~~~~~~~
If you already have an on-disk key in the PEM format (which are recognizable by
the distinctive ``-----BEGIN {format}-----`` and ``-----END {format}-----``
markers), you can load it:
.. code-block:: pycon
>>> from cryptography.hazmat.backends import default_backend
>>> from cryptography.hazmat.primitives import serialization
>>> with open("path/to/key.pem", "rb") as key_file:
... private_key = serialization.load_pem_private_key(
... key_file.read(),
... password=None,
... backend=default_backend()
... )
Serialized keys may optionally be encrypted on disk using a password. In this
example we loaded an unencrypted key, and therefore we did not provide a
password. If the key is encrypted we can pass a ``bytes`` object as the
``password`` argument.
There is also support for :func:`loading public keys in the SSH format
<cryptography.hazmat.primitives.serialization.load_ssh_public_key>`.
Key serialization
~~~~~~~~~~~~~~~~~
If you have a private key that you've loaded or generated which implements the
:class:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateKeyWithSerialization`
interface you can use
:meth:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateKeyWithSerialization.private_bytes`
to serialize the key.
.. doctest::
>>> from cryptography.hazmat.primitives import serialization
>>> pem = private_key.private_bytes(
... encoding=serialization.Encoding.PEM,
... format=serialization.PrivateFormat.PKCS8,
... encryption_algorithm=serialization.BestAvailableEncryption(b'mypassword')
... )
>>> pem.splitlines()[0]
b'-----BEGIN ENCRYPTED PRIVATE KEY-----'
It is also possible to serialize without encryption using
:class:`~cryptography.hazmat.primitives.serialization.NoEncryption`.
.. doctest::
>>> pem = private_key.private_bytes(
... encoding=serialization.Encoding.PEM,
... format=serialization.PrivateFormat.TraditionalOpenSSL,
... encryption_algorithm=serialization.NoEncryption()
... )
>>> pem.splitlines()[0]
b'-----BEGIN RSA PRIVATE KEY-----'
For public keys you can use
:meth:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPublicKey.public_bytes`
to serialize the key.
.. doctest::
>>> from cryptography.hazmat.primitives import serialization
>>> public_key = private_key.public_key()
>>> pem = public_key.public_bytes(
... encoding=serialization.Encoding.PEM,
... format=serialization.PublicFormat.SubjectPublicKeyInfo
... )
>>> pem.splitlines()[0]
b'-----BEGIN PUBLIC KEY-----'
Signing
~~~~~~~
A private key can be used to sign a message. This allows anyone with the public
key to verify that the message was created by someone who possesses the
corresponding private key. RSA signatures require a specific hash function, and
padding to be used. Here is an example of signing ``message`` using RSA, with a
secure hash function and padding:
.. doctest::
>>> from cryptography.hazmat.primitives import hashes
>>> from cryptography.hazmat.primitives.asymmetric import padding
>>> message = b"A message I want to sign"
>>> signature = private_key.sign(
... message,
... padding.PSS(
... mgf=padding.MGF1(hashes.SHA256()),
... salt_length=padding.PSS.MAX_LENGTH
... ),
... hashes.SHA256()
... )
Valid paddings for signatures are
:class:`~cryptography.hazmat.primitives.asymmetric.padding.PSS` and
:class:`~cryptography.hazmat.primitives.asymmetric.padding.PKCS1v15`. ``PSS``
is the recommended choice for any new protocols or applications, ``PKCS1v15``
should only be used to support legacy protocols.
If your data is too large to be passed in a single call, you can hash it
separately and pass that value using
:class:`~cryptography.hazmat.primitives.asymmetric.utils.Prehashed`.
.. doctest::
>>> from cryptography.hazmat.primitives.asymmetric import utils
>>> chosen_hash = hashes.SHA256()
>>> hasher = hashes.Hash(chosen_hash, default_backend())
>>> hasher.update(b"data & ")
>>> hasher.update(b"more data")
>>> digest = hasher.finalize()
>>> sig = private_key.sign(
... digest,
... padding.PSS(
... mgf=padding.MGF1(hashes.SHA256()),
... salt_length=padding.PSS.MAX_LENGTH
... ),
... utils.Prehashed(chosen_hash)
... )
Verification
~~~~~~~~~~~~
The previous section describes what to do if you have a private key and want to
sign something. If you have a public key, a message, a signature, and the
signing algorithm that was used you can check that the private key associated
with a given public key was used to sign that specific message. You can obtain
a public key to use in verification using
:func:`~cryptography.hazmat.primitives.serialization.load_pem_public_key`,
:func:`~cryptography.hazmat.primitives.serialization.load_der_public_key`,
:meth:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPublicNumbers.public_key`
, or
:meth:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateKey.public_key`.
.. doctest::
>>> public_key = private_key.public_key()
>>> public_key.verify(
... signature,
... message,
... padding.PSS(
... mgf=padding.MGF1(hashes.SHA256()),
... salt_length=padding.PSS.MAX_LENGTH
... ),
... hashes.SHA256()
... )
If the signature does not match, ``verify()`` will raise an
:class:`~cryptography.exceptions.InvalidSignature` exception.
If your data is too large to be passed in a single call, you can hash it
separately and pass that value using
:class:`~cryptography.hazmat.primitives.asymmetric.utils.Prehashed`.
.. doctest::
>>> chosen_hash = hashes.SHA256()
>>> hasher = hashes.Hash(chosen_hash, default_backend())
>>> hasher.update(b"data & ")
>>> hasher.update(b"more data")
>>> digest = hasher.finalize()
>>> public_key.verify(
... sig,
... digest,
... padding.PSS(
... mgf=padding.MGF1(hashes.SHA256()),
... salt_length=padding.PSS.MAX_LENGTH
... ),
... utils.Prehashed(chosen_hash)
... )
Encryption
~~~~~~~~~~
RSA encryption is interesting because encryption is performed using the
**public** key, meaning anyone can encrypt data. The data is then decrypted
using the **private** key.
Like signatures, RSA supports encryption with several different padding
options. Here's an example using a secure padding and hash function:
.. doctest::
>>> message = b"encrypted data"
>>> ciphertext = public_key.encrypt(
... message,
... padding.OAEP(
... mgf=padding.MGF1(algorithm=hashes.SHA256()),
... algorithm=hashes.SHA256(),
... label=None
... )
... )
Valid paddings for encryption are
:class:`~cryptography.hazmat.primitives.asymmetric.padding.OAEP` and
:class:`~cryptography.hazmat.primitives.asymmetric.padding.PKCS1v15`. ``OAEP``
is the recommended choice for any new protocols or applications, ``PKCS1v15``
should only be used to support legacy protocols.
Decryption
~~~~~~~~~~
Once you have an encrypted message, it can be decrypted using the private key:
.. doctest::
>>> plaintext = private_key.decrypt(
... ciphertext,
... padding.OAEP(
... mgf=padding.MGF1(algorithm=hashes.SHA256()),
... algorithm=hashes.SHA256(),
... label=None
... )
... )
>>> plaintext == message
True
Padding
~~~~~~~
.. module:: cryptography.hazmat.primitives.asymmetric.padding
.. class:: AsymmetricPadding
.. versionadded:: 0.2
.. attribute:: name
.. class:: PSS(mgf, salt_length)
.. versionadded:: 0.3
.. versionchanged:: 0.4
Added ``salt_length`` parameter.
PSS (Probabilistic Signature Scheme) is a signature scheme defined in
:rfc:`3447`. It is more complex than PKCS1 but possesses a `security proof`_.
This is the `recommended padding algorithm`_ for RSA signatures. It cannot
be used with RSA encryption.
:param mgf: A mask generation function object. At this time the only
supported MGF is :class:`MGF1`.
:param int salt_length: The length of the salt. It is recommended that this
be set to ``PSS.MAX_LENGTH``.
.. attribute:: MAX_LENGTH
Pass this attribute to ``salt_length`` to get the maximum salt length
available.
.. class:: OAEP(mgf, algorithm, label)
.. versionadded:: 0.4
OAEP (Optimal Asymmetric Encryption Padding) is a padding scheme defined in
:rfc:`3447`. It provides probabilistic encryption and is `proven secure`_
against several attack types. This is the `recommended padding algorithm`_
for RSA encryption. It cannot be used with RSA signing.
:param mgf: A mask generation function object. At this time the only
supported MGF is :class:`MGF1`.
:param algorithm: An instance of
:class:`~cryptography.hazmat.primitives.hashes.HashAlgorithm`.
:param bytes label: A label to apply. This is a rarely used field and
should typically be set to ``None`` or ``b""``, which are equivalent.
.. class:: PKCS1v15()
.. versionadded:: 0.3
PKCS1 v1.5 (also known as simply PKCS1) is a simple padding scheme
developed for use with RSA keys. It is defined in :rfc:`3447`. This padding
can be used for signing and encryption.
It is not recommended that ``PKCS1v15`` be used for new applications,
:class:`OAEP` should be preferred for encryption and :class:`PSS` should be
preferred for signatures.
.. function:: calculate_max_pss_salt_length(key, hash_algorithm)
.. versionadded:: 1.5
:param key: An RSA public or private key.
:param hash_algorithm: A
:class:`cryptography.hazmat.primitives.hashes.HashAlgorithm`.
:returns int: The computed salt length.
Computes the length of the salt that :class:`PSS` will use if
:data:`PSS.MAX_LENGTH` is used.
Mask generation functions
-------------------------
.. class:: MGF1(algorithm)
.. versionadded:: 0.3
.. versionchanged:: 0.6
Removed the deprecated ``salt_length`` parameter.
MGF1 (Mask Generation Function 1) is used as the mask generation function
in :class:`PSS` and :class:`OAEP` padding. It takes a hash algorithm.
:param algorithm: An instance of
:class:`~cryptography.hazmat.primitives.hashes.HashAlgorithm`.
Numbers
~~~~~~~
.. currentmodule:: cryptography.hazmat.primitives.asymmetric.rsa
These classes hold the constituent components of an RSA key. They are useful
only when more traditional :doc:`/hazmat/primitives/asymmetric/serialization`
is unavailable.
.. class:: RSAPublicNumbers(e, n)
.. versionadded:: 0.5
The collection of integers that make up an RSA public key.
.. attribute:: n
:type: int
The public modulus.
.. attribute:: e
:type: int
The public exponent.
.. method:: public_key(backend)
:param backend: An instance of
:class:`~cryptography.hazmat.backends.interfaces.RSABackend`.
:returns: A new instance of
:class:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPublicKey`.
.. class:: RSAPrivateNumbers(p, q, d, dmp1, dmq1, iqmp, public_numbers)
.. versionadded:: 0.5
The collection of integers that make up an RSA private key.
.. warning::
With the exception of the integers contained in the
:class:`RSAPublicNumbers` all attributes of this class must be kept
secret. Revealing them will compromise the security of any
cryptographic operations performed with a key loaded from them.
.. attribute:: public_numbers
:type: :class:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPublicNumbers`
The :class:`RSAPublicNumbers` which makes up the RSA public key
associated with this RSA private key.
.. attribute:: p
:type: int
``p``, one of the two primes composing ``n``.
.. attribute:: q
:type: int
``q``, one of the two primes composing ``n``.
.. attribute:: d
:type: int
The private exponent.
.. attribute:: dmp1
:type: int
A `Chinese remainder theorem`_ coefficient used to speed up RSA
operations. Calculated as: d mod (p-1)
.. attribute:: dmq1
:type: int
A `Chinese remainder theorem`_ coefficient used to speed up RSA
operations. Calculated as: d mod (q-1)
.. attribute:: iqmp
:type: int
A `Chinese remainder theorem`_ coefficient used to speed up RSA
operations. Calculated as: q\ :sup:`-1` mod p
.. method:: private_key(backend)
:param backend: A new instance of
:class:`~cryptography.hazmat.backends.interfaces.RSABackend`.
:returns: An instance of
:class:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateKey`.
Handling partial RSA private keys
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If you are trying to load RSA private keys yourself you may find that not all
parameters required by ``RSAPrivateNumbers`` are available. In particular the
`Chinese Remainder Theorem`_ (CRT) values ``dmp1``, ``dmq1``, ``iqmp`` may be
missing or present in a different form. For example, `OpenPGP`_ does not include
the ``iqmp``, ``dmp1`` or ``dmq1`` parameters.
The following functions are provided for users who want to work with keys like
this without having to do the math themselves.
.. function:: rsa_crt_iqmp(p, q)
.. versionadded:: 0.4
Computes the ``iqmp`` (also known as ``qInv``) parameter from the RSA
primes ``p`` and ``q``.
.. function:: rsa_crt_dmp1(private_exponent, p)
.. versionadded:: 0.4
Computes the ``dmp1`` parameter from the RSA private exponent (``d``) and
prime ``p``.
.. function:: rsa_crt_dmq1(private_exponent, q)
.. versionadded:: 0.4
Computes the ``dmq1`` parameter from the RSA private exponent (``d``) and
prime ``q``.
.. function:: rsa_recover_prime_factors(n, e, d)
.. versionadded:: 0.8
Computes the prime factors ``(p, q)`` given the modulus, public exponent,
and private exponent.
.. note::
When recovering prime factors this algorithm will always return ``p``
and ``q`` such that ``p > q``. Note: before 1.5, this function always
returned ``p`` and ``q`` such that ``p < q``. It was changed because
libraries commonly require ``p > q``.
:return: A tuple ``(p, q)``
Key interfaces
~~~~~~~~~~~~~~
.. class:: RSAPrivateKey
.. versionadded:: 0.2
An `RSA`_ private key. An RSA private key that is not an
:term:`opaque key` also implements :class:`RSAPrivateKeyWithSerialization`
to provide serialization methods.
.. method:: decrypt(ciphertext, padding)
.. versionadded:: 0.4
Decrypt data that was encrypted with the public key.
:param bytes ciphertext: The ciphertext to decrypt.
:param padding: An instance of
:class:`~cryptography.hazmat.primitives.asymmetric.padding.AsymmetricPadding`.
:return bytes: Decrypted data.
.. method:: public_key()
:return: :class:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPublicKey`
An RSA public key object corresponding to the values of the private key.
.. attribute:: key_size
:type: int
The bit length of the modulus.
.. method:: sign(data, padding, algorithm)
.. versionadded:: 1.4
.. versionchanged:: 1.6
:class:`~cryptography.hazmat.primitives.asymmetric.utils.Prehashed`
can now be used as an ``algorithm``.
Sign one block of data which can be verified later by others using the
public key.
:param bytes data: The message string to sign.
:param padding: An instance of
:class:`~cryptography.hazmat.primitives.asymmetric.padding.AsymmetricPadding`.
:param algorithm: An instance of
:class:`~cryptography.hazmat.primitives.hashes.HashAlgorithm` or
:class:`~cryptography.hazmat.primitives.asymmetric.utils.Prehashed`
if the ``data`` you want to sign has already been hashed.
:return bytes: Signature.
.. class:: RSAPrivateKeyWithSerialization
.. versionadded:: 0.8
This interface contains additional methods relating to serialization.
Any object with this interface also has all the methods from
:class:`RSAPrivateKey`.
.. method:: private_numbers()
Create a
:class:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateNumbers`
object.
:returns: An
:class:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateNumbers`
instance.
.. method:: private_bytes(encoding, format, encryption_algorithm)
Allows serialization of the key to bytes. Encoding (
:attr:`~cryptography.hazmat.primitives.serialization.Encoding.PEM` or
:attr:`~cryptography.hazmat.primitives.serialization.Encoding.DER`),
format (
:attr:`~cryptography.hazmat.primitives.serialization.PrivateFormat.TraditionalOpenSSL`
or
:attr:`~cryptography.hazmat.primitives.serialization.PrivateFormat.PKCS8`)
and encryption algorithm (such as
:class:`~cryptography.hazmat.primitives.serialization.BestAvailableEncryption`
or :class:`~cryptography.hazmat.primitives.serialization.NoEncryption`)
are chosen to define the exact serialization.
:param encoding: A value from the
:class:`~cryptography.hazmat.primitives.serialization.Encoding` enum.
:param format: A value from the
:class:`~cryptography.hazmat.primitives.serialization.PrivateFormat`
enum.
:param encryption_algorithm: An instance of an object conforming to the
:class:`~cryptography.hazmat.primitives.serialization.KeySerializationEncryption`
interface.
:return bytes: Serialized key.
.. class:: RSAPublicKey
.. versionadded:: 0.2
An `RSA`_ public key.
.. method:: encrypt(plaintext, padding)
.. versionadded:: 0.4
Encrypt data with the public key.
:param bytes plaintext: The plaintext to encrypt.
:param padding: An instance of
:class:`~cryptography.hazmat.primitives.asymmetric.padding.AsymmetricPadding`.
:return bytes: Encrypted data.
.. attribute:: key_size
:type: int
The bit length of the modulus.
.. method:: public_numbers()
Create a
:class:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPublicNumbers`
object.
:returns: An
:class:`~cryptography.hazmat.primitives.asymmetric.rsa.RSAPublicNumbers`
instance.
.. method:: public_bytes(encoding, format)
Allows serialization of the key to bytes. Encoding (
:attr:`~cryptography.hazmat.primitives.serialization.Encoding.PEM` or
:attr:`~cryptography.hazmat.primitives.serialization.Encoding.DER`) and
format (
:attr:`~cryptography.hazmat.primitives.serialization.PublicFormat.SubjectPublicKeyInfo`
or
:attr:`~cryptography.hazmat.primitives.serialization.PublicFormat.PKCS1`)
are chosen to define the exact serialization.
:param encoding: A value from the
:class:`~cryptography.hazmat.primitives.serialization.Encoding` enum.
:param format: A value from the
:class:`~cryptography.hazmat.primitives.serialization.PublicFormat` enum.
:return bytes: Serialized key.
.. method:: verify(signature, data, padding, algorithm)
.. versionadded:: 1.4
.. versionchanged:: 1.6
:class:`~cryptography.hazmat.primitives.asymmetric.utils.Prehashed`
can now be used as an ``algorithm``.
Verify one block of data was signed by the private key
associated with this public key.
:param bytes signature: The signature to verify.
:param bytes data: The message string that was signed.
:param padding: An instance of
:class:`~cryptography.hazmat.primitives.asymmetric.padding.AsymmetricPadding`.
:param algorithm: An instance of
:class:`~cryptography.hazmat.primitives.hashes.HashAlgorithm` or
:class:`~cryptography.hazmat.primitives.asymmetric.utils.Prehashed`
if the ``data`` you want to verify has already been hashed.
:raises cryptography.exceptions.InvalidSignature: If the signature does
not validate.
.. class:: RSAPublicKeyWithSerialization
.. versionadded:: 0.8
Alias for :class:`RSAPublicKey`.
.. _`RSA`: https://en.wikipedia.org/wiki/RSA_(cryptosystem)
.. _`public-key`: https://en.wikipedia.org/wiki/Public-key_cryptography
.. _`specific mathematical properties`: https://en.wikipedia.org/wiki/RSA_(cryptosystem)#Key_generation
.. _`use 65537`: https://www.daemonology.net/blog/2009-06-11-cryptographic-right-answers.html
.. _`at least 2048`: https://www.cosic.esat.kuleuven.be/ecrypt/ecrypt2/documents/D.SPA.20.pdf
.. _`OpenPGP`: https://en.wikipedia.org/wiki/Pretty_Good_Privacy
.. _`Chinese Remainder Theorem`: https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29#Using_the_Chinese_remainder_algorithm
.. _`security proof`: https://eprint.iacr.org/2001/062.pdf
.. _`recommended padding algorithm`: https://www.daemonology.net/blog/2009-06-11-cryptographic-right-answers.html
.. _`proven secure`: https://cseweb.ucsd.edu/~mihir/papers/oae.pdf