You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

117 lines
4.5 KiB

#!/usr/bin/python
from __future__ import print_function
import keras
from keras.models import Sequential
from keras.models import Model
from keras.layers import Input
from keras.layers import Dense
from keras.layers import LSTM
from keras.layers import GRU
from keras.layers import SimpleRNN
from keras.layers import Dropout
from keras.layers import concatenate
from keras import losses
from keras import regularizers
from keras.constraints import min_max_norm
import h5py
from keras.constraints import Constraint
from keras import backend as K
import numpy as np
#import tensorflow as tf
#from keras.backend.tensorflow_backend import set_session
#config = tf.ConfigProto()
#config.gpu_options.per_process_gpu_memory_fraction = 0.42
#set_session(tf.Session(config=config))
def my_crossentropy(y_true, y_pred):
return K.mean(2*K.abs(y_true-0.5) * K.binary_crossentropy(y_pred, y_true), axis=-1)
def mymask(y_true):
return K.minimum(y_true+1., 1.)
def msse(y_true, y_pred):
return K.mean(mymask(y_true) * K.square(K.sqrt(y_pred) - K.sqrt(y_true)), axis=-1)
def mycost(y_true, y_pred):
return K.mean(mymask(y_true) * (10*K.square(K.square(K.sqrt(y_pred) - K.sqrt(y_true))) + K.square(K.sqrt(y_pred) - K.sqrt(y_true)) + 0.01*K.binary_crossentropy(y_pred, y_true)), axis=-1)
def my_accuracy(y_true, y_pred):
return K.mean(2*K.abs(y_true-0.5) * K.equal(y_true, K.round(y_pred)), axis=-1)
class WeightClip(Constraint):
'''Clips the weights incident to each hidden unit to be inside a range
'''
def __init__(self, c=2):
self.c = c
def __call__(self, p):
return K.clip(p, -self.c, self.c)
def get_config(self):
return {'name': self.__class__.__name__,
'c': self.c}
reg = 0.000001
constraint = WeightClip(0.499)
print('Build model...')
main_input = Input(shape=(None, 42), name='main_input')
tmp = Dense(24, activation='tanh', name='input_dense', kernel_constraint=constraint, bias_constraint=constraint)(main_input)
vad_gru = GRU(24, activation='tanh', recurrent_activation='sigmoid', return_sequences=True, name='vad_gru', kernel_regularizer=regularizers.l2(reg), recurrent_regularizer=regularizers.l2(reg), kernel_constraint=constraint, recurrent_constraint=constraint, bias_constraint=constraint)(tmp)
vad_output = Dense(1, activation='sigmoid', name='vad_output', kernel_constraint=constraint, bias_constraint=constraint)(vad_gru)
noise_input = keras.layers.concatenate([tmp, vad_gru, main_input])
noise_gru = GRU(48, activation='relu', recurrent_activation='sigmoid', return_sequences=True, name='noise_gru', kernel_regularizer=regularizers.l2(reg), recurrent_regularizer=regularizers.l2(reg), kernel_constraint=constraint, recurrent_constraint=constraint, bias_constraint=constraint)(noise_input)
denoise_input = keras.layers.concatenate([vad_gru, noise_gru, main_input])
denoise_gru = GRU(96, activation='tanh', recurrent_activation='sigmoid', return_sequences=True, name='denoise_gru', kernel_regularizer=regularizers.l2(reg), recurrent_regularizer=regularizers.l2(reg), kernel_constraint=constraint, recurrent_constraint=constraint, bias_constraint=constraint)(denoise_input)
denoise_output = Dense(22, activation='sigmoid', name='denoise_output', kernel_constraint=constraint, bias_constraint=constraint)(denoise_gru)
model = Model(inputs=main_input, outputs=[denoise_output, vad_output])
model.compile(loss=[mycost, my_crossentropy],
metrics=[msse],
optimizer='adam', loss_weights=[10, 0.5])
batch_size = 32
print('Loading data...')
with h5py.File('training.h5', 'r') as hf:
all_data = hf['data'][:]
print('done.')
window_size = 2000
nb_sequences = len(all_data)//window_size
print(nb_sequences, ' sequences')
x_train = all_data[:nb_sequences*window_size, :42]
x_train = np.reshape(x_train, (nb_sequences, window_size, 42))
y_train = np.copy(all_data[:nb_sequences*window_size, 42:64])
y_train = np.reshape(y_train, (nb_sequences, window_size, 22))
noise_train = np.copy(all_data[:nb_sequences*window_size, 64:86])
noise_train = np.reshape(noise_train, (nb_sequences, window_size, 22))
vad_train = np.copy(all_data[:nb_sequences*window_size, 86:87])
vad_train = np.reshape(vad_train, (nb_sequences, window_size, 1))
all_data = 0;
#x_train = x_train.astype('float32')
#y_train = y_train.astype('float32')
print(len(x_train), 'train sequences. x shape =', x_train.shape, 'y shape = ', y_train.shape)
print('Train...')
model.fit(x_train, [y_train, vad_train],
batch_size=batch_size,
epochs=120,
validation_split=0.1)
model.save("weights.hdf5")