You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
590 lines
21 KiB
590 lines
21 KiB
// Copyright 2014, VIXL authors
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
// * Neither the name of ARM Limited nor the names of its contributors may be
|
|
// used to endorse or promote products derived from this software without
|
|
// specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
|
|
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
|
|
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#ifndef VIXL_AARCH64_TEST_UTILS_AARCH64_H_
|
|
#define VIXL_AARCH64_TEST_UTILS_AARCH64_H_
|
|
|
|
#include "test-runner.h"
|
|
|
|
#include "aarch64/cpu-aarch64.h"
|
|
#include "aarch64/disasm-aarch64.h"
|
|
#include "aarch64/macro-assembler-aarch64.h"
|
|
#include "aarch64/simulator-aarch64.h"
|
|
|
|
namespace vixl {
|
|
namespace aarch64 {
|
|
|
|
// Signalling and quiet NaNs in double format, constructed such that the bottom
|
|
// 32 bits look like a signalling or quiet NaN (as appropriate) when interpreted
|
|
// as a float. These values are not architecturally significant, but they're
|
|
// useful in tests for initialising registers.
|
|
extern const double kFP64SignallingNaN;
|
|
extern const double kFP64QuietNaN;
|
|
|
|
// Signalling and quiet NaNs in float format.
|
|
extern const float kFP32SignallingNaN;
|
|
extern const float kFP32QuietNaN;
|
|
|
|
// Signalling and quiet NaNs in half-precision float format.
|
|
extern const Float16 kFP16SignallingNaN;
|
|
extern const Float16 kFP16QuietNaN;
|
|
|
|
// Vector registers don't naturally fit any C++ native type, so define a class
|
|
// with convenient accessors.
|
|
// Note that this has to be a POD type so that we can use 'offsetof' with it.
|
|
template <int kSizeInBytes>
|
|
struct VectorValue {
|
|
template <typename T>
|
|
T GetLane(int lane) const {
|
|
size_t lane_size = sizeof(T);
|
|
VIXL_CHECK(lane >= 0);
|
|
VIXL_CHECK(kSizeInBytes >= ((lane + 1) * lane_size));
|
|
T result;
|
|
memcpy(&result, bytes + (lane * lane_size), lane_size);
|
|
return result;
|
|
}
|
|
|
|
template <typename T>
|
|
void SetLane(int lane, T value) {
|
|
size_t lane_size = sizeof(value);
|
|
VIXL_CHECK(kSizeInBytes >= ((lane + 1) * lane_size));
|
|
memcpy(bytes + (lane * lane_size), &value, lane_size);
|
|
}
|
|
|
|
bool Equals(const VectorValue<kSizeInBytes>& other) const {
|
|
return memcmp(bytes, other.bytes, kSizeInBytes) == 0;
|
|
}
|
|
|
|
uint8_t bytes[kSizeInBytes];
|
|
};
|
|
|
|
// It would be convenient to make these subclasses, so we can provide convenient
|
|
// constructors and utility methods specific to each register type, but we can't
|
|
// do that because it makes the result a non-POD type, and then we can't use
|
|
// 'offsetof' in RegisterDump::Dump.
|
|
typedef VectorValue<kQRegSizeInBytes> QRegisterValue;
|
|
typedef VectorValue<kZRegMaxSizeInBytes> ZRegisterValue;
|
|
typedef VectorValue<kPRegMaxSizeInBytes> PRegisterValue;
|
|
|
|
// RegisterDump: Object allowing integer, floating point and flags registers
|
|
// to be saved to itself for future reference.
|
|
class RegisterDump {
|
|
public:
|
|
RegisterDump() : completed_(false) {
|
|
VIXL_ASSERT(sizeof(dump_.d_[0]) == kDRegSizeInBytes);
|
|
VIXL_ASSERT(sizeof(dump_.s_[0]) == kSRegSizeInBytes);
|
|
VIXL_ASSERT(sizeof(dump_.h_[0]) == kHRegSizeInBytes);
|
|
VIXL_ASSERT(sizeof(dump_.d_[0]) == kXRegSizeInBytes);
|
|
VIXL_ASSERT(sizeof(dump_.s_[0]) == kWRegSizeInBytes);
|
|
VIXL_ASSERT(sizeof(dump_.x_[0]) == kXRegSizeInBytes);
|
|
VIXL_ASSERT(sizeof(dump_.w_[0]) == kWRegSizeInBytes);
|
|
VIXL_ASSERT(sizeof(dump_.q_[0]) == kQRegSizeInBytes);
|
|
}
|
|
|
|
// The Dump method generates code to store a snapshot of the register values.
|
|
// It needs to be able to use the stack temporarily, and requires that the
|
|
// current stack pointer is sp, and is properly aligned.
|
|
//
|
|
// The dumping code is generated though the given MacroAssembler. No registers
|
|
// are corrupted in the process, but the stack is used briefly. The flags will
|
|
// be corrupted during this call.
|
|
void Dump(MacroAssembler* assm);
|
|
|
|
// Register accessors.
|
|
inline int32_t wreg(unsigned code) const {
|
|
if (code == kSPRegInternalCode) {
|
|
return wspreg();
|
|
}
|
|
VIXL_ASSERT(RegAliasesMatch(code));
|
|
return dump_.w_[code];
|
|
}
|
|
|
|
inline int64_t xreg(unsigned code) const {
|
|
if (code == kSPRegInternalCode) {
|
|
return spreg();
|
|
}
|
|
VIXL_ASSERT(RegAliasesMatch(code));
|
|
return dump_.x_[code];
|
|
}
|
|
|
|
// VRegister accessors.
|
|
inline uint16_t hreg_bits(unsigned code) const {
|
|
VIXL_ASSERT(VRegAliasesMatch(code));
|
|
return dump_.h_[code];
|
|
}
|
|
|
|
inline uint32_t sreg_bits(unsigned code) const {
|
|
VIXL_ASSERT(VRegAliasesMatch(code));
|
|
return dump_.s_[code];
|
|
}
|
|
|
|
inline Float16 hreg(unsigned code) const {
|
|
return RawbitsToFloat16(hreg_bits(code));
|
|
}
|
|
|
|
inline float sreg(unsigned code) const {
|
|
return RawbitsToFloat(sreg_bits(code));
|
|
}
|
|
|
|
inline uint64_t dreg_bits(unsigned code) const {
|
|
VIXL_ASSERT(VRegAliasesMatch(code));
|
|
return dump_.d_[code];
|
|
}
|
|
|
|
inline double dreg(unsigned code) const {
|
|
return RawbitsToDouble(dreg_bits(code));
|
|
}
|
|
|
|
inline QRegisterValue qreg(unsigned code) const { return dump_.q_[code]; }
|
|
|
|
template <typename T>
|
|
inline T zreg_lane(unsigned code, int lane) const {
|
|
VIXL_ASSERT(VRegAliasesMatch(code));
|
|
VIXL_ASSERT(CPUHas(CPUFeatures::kSVE));
|
|
VIXL_ASSERT(lane < GetSVELaneCount(sizeof(T) * kBitsPerByte));
|
|
return dump_.z_[code].GetLane<T>(lane);
|
|
}
|
|
|
|
inline uint64_t zreg_lane(unsigned code,
|
|
unsigned size_in_bits,
|
|
int lane) const {
|
|
switch (size_in_bits) {
|
|
case kBRegSize:
|
|
return zreg_lane<uint8_t>(code, lane);
|
|
case kHRegSize:
|
|
return zreg_lane<uint16_t>(code, lane);
|
|
case kSRegSize:
|
|
return zreg_lane<uint32_t>(code, lane);
|
|
case kDRegSize:
|
|
return zreg_lane<uint64_t>(code, lane);
|
|
}
|
|
VIXL_UNREACHABLE();
|
|
return 0;
|
|
}
|
|
|
|
inline uint64_t preg_lane(unsigned code,
|
|
unsigned p_bits_per_lane,
|
|
int lane) const {
|
|
VIXL_ASSERT(CPUHas(CPUFeatures::kSVE));
|
|
VIXL_ASSERT(lane < GetSVELaneCount(p_bits_per_lane * kZRegBitsPerPRegBit));
|
|
// Load a chunk and extract the necessary bits. The chunk size is arbitrary.
|
|
typedef uint64_t Chunk;
|
|
const size_t kChunkSizeInBits = sizeof(Chunk) * kBitsPerByte;
|
|
VIXL_ASSERT(IsPowerOf2(p_bits_per_lane));
|
|
VIXL_ASSERT(p_bits_per_lane <= kChunkSizeInBits);
|
|
|
|
int chunk_index = (lane * p_bits_per_lane) / kChunkSizeInBits;
|
|
int bit_index = (lane * p_bits_per_lane) % kChunkSizeInBits;
|
|
Chunk chunk = dump_.p_[code].GetLane<Chunk>(chunk_index);
|
|
return (chunk >> bit_index) & GetUintMask(p_bits_per_lane);
|
|
}
|
|
|
|
inline int GetSVELaneCount(int lane_size_in_bits) const {
|
|
VIXL_ASSERT(lane_size_in_bits > 0);
|
|
VIXL_ASSERT((dump_.vl_ % lane_size_in_bits) == 0);
|
|
uint64_t count = dump_.vl_ / lane_size_in_bits;
|
|
VIXL_ASSERT(count <= INT_MAX);
|
|
return static_cast<int>(count);
|
|
}
|
|
|
|
template <typename T>
|
|
inline bool HasSVELane(T reg, int lane) const {
|
|
VIXL_ASSERT(reg.IsZRegister() || reg.IsPRegister());
|
|
return lane < GetSVELaneCount(reg.GetLaneSizeInBits());
|
|
}
|
|
|
|
template <typename T>
|
|
inline uint64_t GetSVELane(T reg, int lane) const {
|
|
VIXL_ASSERT(HasSVELane(reg, lane));
|
|
if (reg.IsZRegister()) {
|
|
return zreg_lane(reg.GetCode(), reg.GetLaneSizeInBits(), lane);
|
|
} else if (reg.IsPRegister()) {
|
|
VIXL_ASSERT((reg.GetLaneSizeInBits() % kZRegBitsPerPRegBit) == 0);
|
|
return preg_lane(reg.GetCode(),
|
|
reg.GetLaneSizeInBits() / kZRegBitsPerPRegBit,
|
|
lane);
|
|
} else {
|
|
VIXL_ABORT();
|
|
}
|
|
}
|
|
|
|
// Stack pointer accessors.
|
|
inline int64_t spreg() const {
|
|
VIXL_ASSERT(SPRegAliasesMatch());
|
|
return dump_.sp_;
|
|
}
|
|
|
|
inline int32_t wspreg() const {
|
|
VIXL_ASSERT(SPRegAliasesMatch());
|
|
return static_cast<int32_t>(dump_.wsp_);
|
|
}
|
|
|
|
// Flags accessors.
|
|
inline uint32_t flags_nzcv() const {
|
|
VIXL_ASSERT(IsComplete());
|
|
VIXL_ASSERT((dump_.flags_ & ~Flags_mask) == 0);
|
|
return dump_.flags_ & Flags_mask;
|
|
}
|
|
|
|
inline bool IsComplete() const { return completed_; }
|
|
|
|
private:
|
|
// Indicate whether the dump operation has been completed.
|
|
bool completed_;
|
|
|
|
// Check that the lower 32 bits of x<code> exactly match the 32 bits of
|
|
// w<code>. A failure of this test most likely represents a failure in the
|
|
// ::Dump method, or a failure in the simulator.
|
|
bool RegAliasesMatch(unsigned code) const {
|
|
VIXL_ASSERT(IsComplete());
|
|
VIXL_ASSERT(code < kNumberOfRegisters);
|
|
return ((dump_.x_[code] & kWRegMask) == dump_.w_[code]);
|
|
}
|
|
|
|
// As RegAliasesMatch, but for the stack pointer.
|
|
bool SPRegAliasesMatch() const {
|
|
VIXL_ASSERT(IsComplete());
|
|
return ((dump_.sp_ & kWRegMask) == dump_.wsp_);
|
|
}
|
|
|
|
// As RegAliasesMatch, but for Z and V registers.
|
|
bool VRegAliasesMatch(unsigned code) const {
|
|
VIXL_ASSERT(IsComplete());
|
|
VIXL_ASSERT(code < kNumberOfVRegisters);
|
|
bool match = ((dump_.q_[code].GetLane<uint64_t>(0) == dump_.d_[code]) &&
|
|
((dump_.d_[code] & kSRegMask) == dump_.s_[code]) &&
|
|
((dump_.s_[code] & kHRegMask) == dump_.h_[code]));
|
|
if (CPUHas(CPUFeatures::kSVE)) {
|
|
bool z_match =
|
|
memcmp(&dump_.q_[code], &dump_.z_[code], kQRegSizeInBytes) == 0;
|
|
match = match && z_match;
|
|
}
|
|
return match;
|
|
}
|
|
|
|
// Record the CPUFeatures enabled when Dump was called.
|
|
CPUFeatures dump_cpu_features_;
|
|
|
|
// Convenience pass-through for CPU feature checks.
|
|
bool CPUHas(CPUFeatures::Feature feature0,
|
|
CPUFeatures::Feature feature1 = CPUFeatures::kNone,
|
|
CPUFeatures::Feature feature2 = CPUFeatures::kNone,
|
|
CPUFeatures::Feature feature3 = CPUFeatures::kNone) const {
|
|
return dump_cpu_features_.Has(feature0, feature1, feature2, feature3);
|
|
}
|
|
|
|
// Store all the dumped elements in a simple struct so the implementation can
|
|
// use offsetof to quickly find the correct field.
|
|
struct dump_t {
|
|
// Core registers.
|
|
uint64_t x_[kNumberOfRegisters];
|
|
uint32_t w_[kNumberOfRegisters];
|
|
|
|
// Floating-point registers, as raw bits.
|
|
uint64_t d_[kNumberOfVRegisters];
|
|
uint32_t s_[kNumberOfVRegisters];
|
|
uint16_t h_[kNumberOfVRegisters];
|
|
|
|
// Vector registers.
|
|
QRegisterValue q_[kNumberOfVRegisters];
|
|
ZRegisterValue z_[kNumberOfZRegisters];
|
|
|
|
PRegisterValue p_[kNumberOfPRegisters];
|
|
|
|
// The stack pointer.
|
|
uint64_t sp_;
|
|
uint64_t wsp_;
|
|
|
|
// NZCV flags, stored in bits 28 to 31.
|
|
// bit[31] : Negative
|
|
// bit[30] : Zero
|
|
// bit[29] : Carry
|
|
// bit[28] : oVerflow
|
|
uint64_t flags_;
|
|
|
|
// The SVE "VL" (vector length) in bits.
|
|
uint64_t vl_;
|
|
} dump_;
|
|
};
|
|
|
|
// Some tests want to check that a value is _not_ equal to a reference value.
|
|
// These enum values can be used to control the error reporting behaviour.
|
|
enum ExpectedResult { kExpectEqual, kExpectNotEqual };
|
|
|
|
// The Equal* methods return true if the result matches the reference value.
|
|
// They all print an error message to the console if the result is incorrect
|
|
// (according to the ExpectedResult argument, or kExpectEqual if it is absent).
|
|
//
|
|
// Some of these methods don't use the RegisterDump argument, but they have to
|
|
// accept them so that they can overload those that take register arguments.
|
|
bool Equal32(uint32_t expected, const RegisterDump*, uint32_t result);
|
|
bool Equal64(uint64_t reference,
|
|
const RegisterDump*,
|
|
uint64_t result,
|
|
ExpectedResult option = kExpectEqual);
|
|
bool Equal128(QRegisterValue expected,
|
|
const RegisterDump*,
|
|
QRegisterValue result);
|
|
|
|
bool EqualFP16(Float16 expected, const RegisterDump*, uint16_t result);
|
|
bool EqualFP32(float expected, const RegisterDump*, float result);
|
|
bool EqualFP64(double expected, const RegisterDump*, double result);
|
|
|
|
bool Equal32(uint32_t expected, const RegisterDump* core, const Register& reg);
|
|
bool Equal64(uint64_t reference,
|
|
const RegisterDump* core,
|
|
const Register& reg,
|
|
ExpectedResult option = kExpectEqual);
|
|
bool Equal64(uint64_t expected,
|
|
const RegisterDump* core,
|
|
const VRegister& vreg);
|
|
|
|
bool EqualFP16(Float16 expected,
|
|
const RegisterDump* core,
|
|
const VRegister& fpreg);
|
|
bool EqualFP32(float expected,
|
|
const RegisterDump* core,
|
|
const VRegister& fpreg);
|
|
bool EqualFP64(double expected,
|
|
const RegisterDump* core,
|
|
const VRegister& fpreg);
|
|
|
|
bool Equal64(const Register& reg0,
|
|
const RegisterDump* core,
|
|
const Register& reg1,
|
|
ExpectedResult option = kExpectEqual);
|
|
bool Equal128(uint64_t expected_h,
|
|
uint64_t expected_l,
|
|
const RegisterDump* core,
|
|
const VRegister& reg);
|
|
|
|
bool EqualNzcv(uint32_t expected, uint32_t result);
|
|
|
|
bool EqualRegisters(const RegisterDump* a, const RegisterDump* b);
|
|
|
|
template <typename T0, typename T1>
|
|
bool NotEqual64(T0 reference, const RegisterDump* core, T1 result) {
|
|
return !Equal64(reference, core, result, kExpectNotEqual);
|
|
}
|
|
|
|
bool EqualSVELane(uint64_t expected,
|
|
const RegisterDump* core,
|
|
const ZRegister& reg,
|
|
int lane);
|
|
|
|
bool EqualSVELane(uint64_t expected,
|
|
const RegisterDump* core,
|
|
const PRegister& reg,
|
|
int lane);
|
|
|
|
// Check that each SVE lane matches the corresponding expected[] value. The
|
|
// highest-indexed array element maps to the lowest-numbered lane.
|
|
template <typename T, int N, typename R>
|
|
bool EqualSVE(const T (&expected)[N],
|
|
const RegisterDump* core,
|
|
const R& reg,
|
|
bool* printed_warning) {
|
|
VIXL_ASSERT(reg.IsZRegister() || reg.IsPRegister());
|
|
VIXL_ASSERT(reg.HasLaneSize());
|
|
// Evaluate and report errors on every lane, rather than just the first.
|
|
bool equal = true;
|
|
for (int lane = 0; lane < N; ++lane) {
|
|
if (!core->HasSVELane(reg, lane)) {
|
|
if (*printed_warning == false) {
|
|
*printed_warning = true;
|
|
printf(
|
|
"Warning: Ignoring SVE lanes beyond VL (%d bytes) "
|
|
"because the CPU does not implement them.\n",
|
|
core->GetSVELaneCount(kBRegSize));
|
|
}
|
|
break;
|
|
}
|
|
// Map the highest-indexed array element to the lowest-numbered lane.
|
|
equal = EqualSVELane(expected[N - lane - 1], core, reg, lane) && equal;
|
|
}
|
|
return equal;
|
|
}
|
|
|
|
// Check that each SVE lanes matches the `expected` value.
|
|
template <typename R>
|
|
bool EqualSVE(uint64_t expected,
|
|
const RegisterDump* core,
|
|
const R& reg,
|
|
bool* printed_warning) {
|
|
VIXL_ASSERT(reg.IsZRegister() || reg.IsPRegister());
|
|
VIXL_ASSERT(reg.HasLaneSize());
|
|
USE(printed_warning);
|
|
// Evaluate and report errors on every lane, rather than just the first.
|
|
bool equal = true;
|
|
for (int lane = 0; lane < core->GetSVELaneCount(reg.GetLaneSizeInBits());
|
|
++lane) {
|
|
equal = EqualSVELane(expected, core, reg, lane) && equal;
|
|
}
|
|
return equal;
|
|
}
|
|
|
|
// Check that two Z or P registers are equal.
|
|
template <typename R>
|
|
bool EqualSVE(const R& expected,
|
|
const RegisterDump* core,
|
|
const R& result,
|
|
bool* printed_warning) {
|
|
VIXL_ASSERT(result.IsZRegister() || result.IsPRegister());
|
|
VIXL_ASSERT(AreSameFormat(expected, result));
|
|
USE(printed_warning);
|
|
|
|
// If the lane size is omitted, pick a default.
|
|
if (!result.HasLaneSize()) {
|
|
return EqualSVE(expected.VnB(), core, result.VnB(), printed_warning);
|
|
}
|
|
|
|
// Evaluate and report errors on every lane, rather than just the first.
|
|
bool equal = true;
|
|
int lane_size = result.GetLaneSizeInBits();
|
|
for (int lane = 0; lane < core->GetSVELaneCount(lane_size); ++lane) {
|
|
uint64_t expected_lane = core->GetSVELane(expected, lane);
|
|
equal = equal && EqualSVELane(expected_lane, core, result, lane);
|
|
}
|
|
return equal;
|
|
}
|
|
|
|
bool EqualMemory(const void* expected,
|
|
const void* result,
|
|
size_t size_in_bytes,
|
|
size_t zero_offset = 0);
|
|
|
|
// Populate the w, x and r arrays with registers from the 'allowed' mask. The
|
|
// r array will be populated with <reg_size>-sized registers,
|
|
//
|
|
// This allows for tests which use large, parameterized blocks of registers
|
|
// (such as the push and pop tests), but where certain registers must be
|
|
// avoided as they are used for other purposes.
|
|
//
|
|
// Any of w, x, or r can be NULL if they are not required.
|
|
//
|
|
// The return value is a RegList indicating which registers were allocated.
|
|
RegList PopulateRegisterArray(Register* w,
|
|
Register* x,
|
|
Register* r,
|
|
int reg_size,
|
|
int reg_count,
|
|
RegList allowed);
|
|
|
|
// As PopulateRegisterArray, but for floating-point registers.
|
|
RegList PopulateVRegisterArray(VRegister* s,
|
|
VRegister* d,
|
|
VRegister* v,
|
|
int reg_size,
|
|
int reg_count,
|
|
RegList allowed);
|
|
|
|
// Ovewrite the contents of the specified registers. This enables tests to
|
|
// check that register contents are written in cases where it's likely that the
|
|
// correct outcome could already be stored in the register.
|
|
//
|
|
// This always overwrites X-sized registers. If tests are operating on W
|
|
// registers, a subsequent write into an aliased W register should clear the
|
|
// top word anyway, so clobbering the full X registers should make tests more
|
|
// rigorous.
|
|
void Clobber(MacroAssembler* masm,
|
|
RegList reg_list,
|
|
uint64_t const value = 0xfedcba9876543210);
|
|
|
|
// As Clobber, but for FP registers.
|
|
void ClobberFP(MacroAssembler* masm,
|
|
RegList reg_list,
|
|
double const value = kFP64SignallingNaN);
|
|
|
|
// As Clobber, but for a CPURegList with either FP or integer registers. When
|
|
// using this method, the clobber value is always the default for the basic
|
|
// Clobber or ClobberFP functions.
|
|
void Clobber(MacroAssembler* masm, CPURegList reg_list);
|
|
|
|
uint64_t GetSignallingNan(int size_in_bits);
|
|
|
|
// This class acts as a drop-in replacement for VIXL's MacroAssembler, giving
|
|
// CalculateSVEAddress public visibility.
|
|
//
|
|
// CalculateSVEAddress normally has protected visibility, but it's useful to
|
|
// test it in isolation because it is the basis of all SVE non-scatter-gather
|
|
// load and store fall-backs.
|
|
class CalculateSVEAddressMacroAssembler : public vixl::aarch64::MacroAssembler {
|
|
public:
|
|
void CalculateSVEAddress(const Register& xd,
|
|
const SVEMemOperand& addr,
|
|
int vl_divisor_log2) {
|
|
MacroAssembler::CalculateSVEAddress(xd, addr, vl_divisor_log2);
|
|
}
|
|
|
|
void CalculateSVEAddress(const Register& xd, const SVEMemOperand& addr) {
|
|
MacroAssembler::CalculateSVEAddress(xd, addr);
|
|
}
|
|
};
|
|
|
|
// This class acts as a drop-in replacement for VIXL's MacroAssembler, with
|
|
// fast NaN proparation mode switched on.
|
|
class FastNaNPropagationMacroAssembler : public MacroAssembler {
|
|
public:
|
|
FastNaNPropagationMacroAssembler() {
|
|
SetFPNaNPropagationOption(FastNaNPropagation);
|
|
}
|
|
};
|
|
|
|
// This class acts as a drop-in replacement for VIXL's MacroAssembler, with
|
|
// strict NaN proparation mode switched on.
|
|
class StrictNaNPropagationMacroAssembler : public MacroAssembler {
|
|
public:
|
|
StrictNaNPropagationMacroAssembler() {
|
|
SetFPNaNPropagationOption(StrictNaNPropagation);
|
|
}
|
|
};
|
|
|
|
// If the required features are available, return true.
|
|
// Otherwise:
|
|
// - Print a warning message, unless *queried_can_run indicates that we've
|
|
// already done so.
|
|
// - Return false.
|
|
//
|
|
// If *queried_can_run is NULL, it is treated as false. Otherwise, it is set to
|
|
// true, regardless of the return value.
|
|
//
|
|
// The warning message printed on failure is used by tools/threaded_tests.py to
|
|
// count skipped tests. A test must not print more than one such warning
|
|
// message. It is safe to call CanRun multiple times per test, as long as
|
|
// queried_can_run is propagated correctly between calls, and the first call to
|
|
// CanRun requires every feature that is required by subsequent calls. If
|
|
// queried_can_run is NULL, CanRun must not be called more than once per test.
|
|
bool CanRun(const CPUFeatures& required, bool* queried_can_run = NULL);
|
|
|
|
// PushCalleeSavedRegisters(), PopCalleeSavedRegisters() and Dump() use NEON, so
|
|
// we need to enable it in the infrastructure code for each test.
|
|
static const CPUFeatures kInfrastructureCPUFeatures(CPUFeatures::kNEON);
|
|
|
|
} // namespace aarch64
|
|
} // namespace vixl
|
|
|
|
#endif // VIXL_AARCH64_TEST_UTILS_AARCH64_H_
|