You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
425 lines
17 KiB
425 lines
17 KiB
/*
|
|
* Copyright (C) 2019 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "GeneratedTestHarness.h"
|
|
|
|
#include <android-base/logging.h>
|
|
#include <android/hardware/neuralnetworks/1.0/IDevice.h>
|
|
#include <android/hardware/neuralnetworks/1.0/IExecutionCallback.h>
|
|
#include <android/hardware/neuralnetworks/1.0/IPreparedModel.h>
|
|
#include <android/hardware/neuralnetworks/1.0/IPreparedModelCallback.h>
|
|
#include <android/hardware/neuralnetworks/1.0/types.h>
|
|
#include <android/hardware/neuralnetworks/1.1/IDevice.h>
|
|
#include <android/hardware/neuralnetworks/1.2/IDevice.h>
|
|
#include <android/hardware/neuralnetworks/1.2/IExecutionCallback.h>
|
|
#include <android/hardware/neuralnetworks/1.2/IPreparedModel.h>
|
|
#include <android/hardware/neuralnetworks/1.2/IPreparedModelCallback.h>
|
|
#include <android/hidl/allocator/1.0/IAllocator.h>
|
|
#include <android/hidl/memory/1.0/IMemory.h>
|
|
#include <gtest/gtest.h>
|
|
#include <hidlmemory/mapping.h>
|
|
|
|
#include <algorithm>
|
|
#include <chrono>
|
|
#include <iostream>
|
|
#include <numeric>
|
|
#include <vector>
|
|
|
|
#include "1.0/Utils.h"
|
|
#include "1.2/Callbacks.h"
|
|
#include "ExecutionBurstController.h"
|
|
#include "MemoryUtils.h"
|
|
#include "TestHarness.h"
|
|
#include "VtsHalNeuralnetworks.h"
|
|
|
|
namespace android::hardware::neuralnetworks::V1_2::vts::functional {
|
|
|
|
using namespace test_helper;
|
|
using hidl::memory::V1_0::IMemory;
|
|
using implementation::ExecutionCallback;
|
|
using implementation::PreparedModelCallback;
|
|
using V1_0::DataLocation;
|
|
using V1_0::ErrorStatus;
|
|
using V1_0::OperandLifeTime;
|
|
using V1_0::Request;
|
|
using V1_1::ExecutionPreference;
|
|
using HidlToken = hidl_array<uint8_t, static_cast<uint32_t>(Constant::BYTE_SIZE_OF_CACHE_TOKEN)>;
|
|
|
|
namespace {
|
|
|
|
enum class Executor { ASYNC, SYNC, BURST };
|
|
|
|
enum class OutputType { FULLY_SPECIFIED, UNSPECIFIED, INSUFFICIENT };
|
|
|
|
struct TestConfig {
|
|
Executor executor;
|
|
MeasureTiming measureTiming;
|
|
OutputType outputType;
|
|
MemoryType memoryType;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
Model createModel(const TestModel& testModel) {
|
|
// Model operands.
|
|
CHECK_EQ(testModel.referenced.size(), 0u); // Not supported in 1.1.
|
|
hidl_vec<Operand> operands(testModel.main.operands.size());
|
|
size_t constCopySize = 0, constRefSize = 0;
|
|
for (uint32_t i = 0; i < testModel.main.operands.size(); i++) {
|
|
const auto& op = testModel.main.operands[i];
|
|
|
|
DataLocation loc = {};
|
|
if (op.lifetime == TestOperandLifeTime::CONSTANT_COPY) {
|
|
loc = {.poolIndex = 0,
|
|
.offset = static_cast<uint32_t>(constCopySize),
|
|
.length = static_cast<uint32_t>(op.data.size())};
|
|
constCopySize += op.data.alignedSize();
|
|
} else if (op.lifetime == TestOperandLifeTime::CONSTANT_REFERENCE) {
|
|
loc = {.poolIndex = 0,
|
|
.offset = static_cast<uint32_t>(constRefSize),
|
|
.length = static_cast<uint32_t>(op.data.size())};
|
|
constRefSize += op.data.alignedSize();
|
|
}
|
|
|
|
Operand::ExtraParams extraParams;
|
|
if (op.type == TestOperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) {
|
|
extraParams.channelQuant(SymmPerChannelQuantParams{
|
|
.scales = op.channelQuant.scales, .channelDim = op.channelQuant.channelDim});
|
|
}
|
|
|
|
operands[i] = {.type = static_cast<OperandType>(op.type),
|
|
.dimensions = op.dimensions,
|
|
.numberOfConsumers = op.numberOfConsumers,
|
|
.scale = op.scale,
|
|
.zeroPoint = op.zeroPoint,
|
|
.lifetime = static_cast<OperandLifeTime>(op.lifetime),
|
|
.location = loc,
|
|
.extraParams = std::move(extraParams)};
|
|
}
|
|
|
|
// Model operations.
|
|
hidl_vec<Operation> operations(testModel.main.operations.size());
|
|
std::transform(testModel.main.operations.begin(), testModel.main.operations.end(),
|
|
operations.begin(), [](const TestOperation& op) -> Operation {
|
|
return {.type = static_cast<OperationType>(op.type),
|
|
.inputs = op.inputs,
|
|
.outputs = op.outputs};
|
|
});
|
|
|
|
// Constant copies.
|
|
hidl_vec<uint8_t> operandValues(constCopySize);
|
|
for (uint32_t i = 0; i < testModel.main.operands.size(); i++) {
|
|
const auto& op = testModel.main.operands[i];
|
|
if (op.lifetime == TestOperandLifeTime::CONSTANT_COPY) {
|
|
const uint8_t* begin = op.data.get<uint8_t>();
|
|
const uint8_t* end = begin + op.data.size();
|
|
std::copy(begin, end, operandValues.data() + operands[i].location.offset);
|
|
}
|
|
}
|
|
|
|
// Shared memory.
|
|
hidl_vec<hidl_memory> pools = {};
|
|
if (constRefSize > 0) {
|
|
hidl_vec_push_back(&pools, nn::allocateSharedMemory(constRefSize));
|
|
CHECK_NE(pools[0].size(), 0u);
|
|
|
|
// load data
|
|
sp<IMemory> mappedMemory = mapMemory(pools[0]);
|
|
CHECK(mappedMemory.get() != nullptr);
|
|
uint8_t* mappedPtr =
|
|
reinterpret_cast<uint8_t*>(static_cast<void*>(mappedMemory->getPointer()));
|
|
CHECK(mappedPtr != nullptr);
|
|
|
|
for (uint32_t i = 0; i < testModel.main.operands.size(); i++) {
|
|
const auto& op = testModel.main.operands[i];
|
|
if (op.lifetime == TestOperandLifeTime::CONSTANT_REFERENCE) {
|
|
const uint8_t* begin = op.data.get<uint8_t>();
|
|
const uint8_t* end = begin + op.data.size();
|
|
std::copy(begin, end, mappedPtr + operands[i].location.offset);
|
|
}
|
|
}
|
|
}
|
|
|
|
return {.operands = std::move(operands),
|
|
.operations = std::move(operations),
|
|
.inputIndexes = testModel.main.inputIndexes,
|
|
.outputIndexes = testModel.main.outputIndexes,
|
|
.operandValues = std::move(operandValues),
|
|
.pools = std::move(pools),
|
|
.relaxComputationFloat32toFloat16 = testModel.isRelaxed};
|
|
}
|
|
|
|
static bool isOutputSizeGreaterThanOne(const TestModel& testModel, uint32_t index) {
|
|
const auto byteSize = testModel.main.operands[testModel.main.outputIndexes[index]].data.size();
|
|
return byteSize > 1u;
|
|
}
|
|
|
|
static void makeOutputInsufficientSize(uint32_t outputIndex, Request* request) {
|
|
auto& length = request->outputs[outputIndex].location.length;
|
|
ASSERT_GT(length, 1u);
|
|
length -= 1u;
|
|
}
|
|
|
|
static void makeOutputDimensionsUnspecified(Model* model) {
|
|
for (auto i : model->outputIndexes) {
|
|
auto& dims = model->operands[i].dimensions;
|
|
std::fill(dims.begin(), dims.end(), 0);
|
|
}
|
|
}
|
|
|
|
static Return<ErrorStatus> ExecutePreparedModel(const sp<IPreparedModel>& preparedModel,
|
|
const Request& request, MeasureTiming measure,
|
|
sp<ExecutionCallback>& callback) {
|
|
return preparedModel->execute_1_2(request, measure, callback);
|
|
}
|
|
static Return<ErrorStatus> ExecutePreparedModel(const sp<IPreparedModel>& preparedModel,
|
|
const Request& request, MeasureTiming measure,
|
|
hidl_vec<OutputShape>* outputShapes,
|
|
Timing* timing) {
|
|
ErrorStatus result;
|
|
Return<void> ret = preparedModel->executeSynchronously(
|
|
request, measure,
|
|
[&result, outputShapes, timing](ErrorStatus error, const hidl_vec<OutputShape>& shapes,
|
|
const Timing& time) {
|
|
result = error;
|
|
*outputShapes = shapes;
|
|
*timing = time;
|
|
});
|
|
if (!ret.isOk()) {
|
|
return ErrorStatus::GENERAL_FAILURE;
|
|
}
|
|
return result;
|
|
}
|
|
static std::shared_ptr<::android::nn::ExecutionBurstController> CreateBurst(
|
|
const sp<IPreparedModel>& preparedModel) {
|
|
return android::nn::ExecutionBurstController::create(preparedModel,
|
|
std::chrono::microseconds{0});
|
|
}
|
|
|
|
void EvaluatePreparedModel(const sp<IPreparedModel>& preparedModel, const TestModel& testModel,
|
|
const TestConfig& testConfig) {
|
|
// If output0 does not have size larger than one byte, we can not test with insufficient buffer.
|
|
if (testConfig.outputType == OutputType::INSUFFICIENT &&
|
|
!isOutputSizeGreaterThanOne(testModel, 0)) {
|
|
return;
|
|
}
|
|
|
|
ExecutionContext context;
|
|
Request request = context.createRequest(testModel, testConfig.memoryType);
|
|
if (testConfig.outputType == OutputType::INSUFFICIENT) {
|
|
makeOutputInsufficientSize(/*outputIndex=*/0, &request);
|
|
}
|
|
|
|
ErrorStatus executionStatus;
|
|
hidl_vec<OutputShape> outputShapes;
|
|
Timing timing;
|
|
switch (testConfig.executor) {
|
|
case Executor::ASYNC: {
|
|
SCOPED_TRACE("asynchronous");
|
|
|
|
// launch execution
|
|
sp<ExecutionCallback> executionCallback = new ExecutionCallback();
|
|
Return<ErrorStatus> executionLaunchStatus = ExecutePreparedModel(
|
|
preparedModel, request, testConfig.measureTiming, executionCallback);
|
|
ASSERT_TRUE(executionLaunchStatus.isOk());
|
|
EXPECT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(executionLaunchStatus));
|
|
|
|
// retrieve execution status
|
|
executionCallback->wait();
|
|
executionStatus = executionCallback->getStatus();
|
|
outputShapes = executionCallback->getOutputShapes();
|
|
timing = executionCallback->getTiming();
|
|
|
|
break;
|
|
}
|
|
case Executor::SYNC: {
|
|
SCOPED_TRACE("synchronous");
|
|
|
|
// execute
|
|
Return<ErrorStatus> executionReturnStatus = ExecutePreparedModel(
|
|
preparedModel, request, testConfig.measureTiming, &outputShapes, &timing);
|
|
ASSERT_TRUE(executionReturnStatus.isOk());
|
|
executionStatus = static_cast<ErrorStatus>(executionReturnStatus);
|
|
|
|
break;
|
|
}
|
|
case Executor::BURST: {
|
|
SCOPED_TRACE("burst");
|
|
|
|
// create burst
|
|
const std::shared_ptr<::android::nn::ExecutionBurstController> controller =
|
|
CreateBurst(preparedModel);
|
|
ASSERT_NE(nullptr, controller.get());
|
|
|
|
// create memory keys
|
|
std::vector<intptr_t> keys(request.pools.size());
|
|
for (size_t i = 0; i < keys.size(); ++i) {
|
|
keys[i] = reinterpret_cast<intptr_t>(&request.pools[i]);
|
|
}
|
|
|
|
// execute burst
|
|
int n;
|
|
std::tie(n, outputShapes, timing, std::ignore) =
|
|
controller->compute(request, testConfig.measureTiming, keys);
|
|
executionStatus = nn::legacyConvertResultCodeToErrorStatus(n);
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (testConfig.outputType != OutputType::FULLY_SPECIFIED &&
|
|
executionStatus == ErrorStatus::GENERAL_FAILURE) {
|
|
LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
|
|
"execute model that it does not support.";
|
|
std::cout << "[ ] Early termination of test because vendor service cannot "
|
|
"execute model that it does not support."
|
|
<< std::endl;
|
|
GTEST_SKIP();
|
|
}
|
|
if (testConfig.measureTiming == MeasureTiming::NO) {
|
|
EXPECT_EQ(UINT64_MAX, timing.timeOnDevice);
|
|
EXPECT_EQ(UINT64_MAX, timing.timeInDriver);
|
|
} else {
|
|
if (timing.timeOnDevice != UINT64_MAX && timing.timeInDriver != UINT64_MAX) {
|
|
EXPECT_LE(timing.timeOnDevice, timing.timeInDriver);
|
|
}
|
|
}
|
|
|
|
switch (testConfig.outputType) {
|
|
case OutputType::FULLY_SPECIFIED:
|
|
// If the model output operands are fully specified, outputShapes must be either
|
|
// either empty, or have the same number of elements as the number of outputs.
|
|
ASSERT_EQ(ErrorStatus::NONE, executionStatus);
|
|
ASSERT_TRUE(outputShapes.size() == 0 ||
|
|
outputShapes.size() == testModel.main.outputIndexes.size());
|
|
break;
|
|
case OutputType::UNSPECIFIED:
|
|
// If the model output operands are not fully specified, outputShapes must have
|
|
// the same number of elements as the number of outputs.
|
|
ASSERT_EQ(ErrorStatus::NONE, executionStatus);
|
|
ASSERT_EQ(outputShapes.size(), testModel.main.outputIndexes.size());
|
|
break;
|
|
case OutputType::INSUFFICIENT:
|
|
ASSERT_EQ(ErrorStatus::OUTPUT_INSUFFICIENT_SIZE, executionStatus);
|
|
ASSERT_EQ(outputShapes.size(), testModel.main.outputIndexes.size());
|
|
ASSERT_FALSE(outputShapes[0].isSufficient);
|
|
return;
|
|
}
|
|
|
|
// Go through all outputs, check returned output shapes.
|
|
for (uint32_t i = 0; i < outputShapes.size(); i++) {
|
|
EXPECT_TRUE(outputShapes[i].isSufficient);
|
|
const auto& expect = testModel.main.operands[testModel.main.outputIndexes[i]].dimensions;
|
|
const std::vector<uint32_t> actual = outputShapes[i].dimensions;
|
|
EXPECT_EQ(expect, actual);
|
|
}
|
|
|
|
// Retrieve execution results.
|
|
const std::vector<TestBuffer> outputs = context.getOutputBuffers(request);
|
|
|
|
// We want "close-enough" results.
|
|
checkResults(testModel, outputs);
|
|
}
|
|
|
|
void EvaluatePreparedModel(const sp<IPreparedModel>& preparedModel, const TestModel& testModel,
|
|
bool testDynamicOutputShape) {
|
|
std::vector<OutputType> outputTypesList;
|
|
std::vector<MeasureTiming> measureTimingList;
|
|
std::vector<Executor> executorList;
|
|
std::vector<MemoryType> memoryTypeList;
|
|
|
|
if (testDynamicOutputShape) {
|
|
outputTypesList = {OutputType::UNSPECIFIED, OutputType::INSUFFICIENT};
|
|
measureTimingList = {MeasureTiming::NO, MeasureTiming::YES};
|
|
executorList = {Executor::ASYNC, Executor::SYNC, Executor::BURST};
|
|
memoryTypeList = {MemoryType::ASHMEM};
|
|
} else {
|
|
outputTypesList = {OutputType::FULLY_SPECIFIED};
|
|
measureTimingList = {MeasureTiming::NO, MeasureTiming::YES};
|
|
executorList = {Executor::ASYNC, Executor::SYNC, Executor::BURST};
|
|
memoryTypeList = {MemoryType::ASHMEM};
|
|
}
|
|
|
|
for (const OutputType outputType : outputTypesList) {
|
|
for (const MeasureTiming measureTiming : measureTimingList) {
|
|
for (const Executor executor : executorList) {
|
|
for (const MemoryType memoryType : memoryTypeList) {
|
|
const TestConfig testConfig = {.executor = executor,
|
|
.measureTiming = measureTiming,
|
|
.outputType = outputType,
|
|
.memoryType = memoryType};
|
|
EvaluatePreparedModel(preparedModel, testModel, testConfig);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void Execute(const sp<IDevice>& device, const TestModel& testModel, bool testDynamicOutputShape) {
|
|
Model model = createModel(testModel);
|
|
if (testDynamicOutputShape) {
|
|
makeOutputDimensionsUnspecified(&model);
|
|
}
|
|
|
|
sp<IPreparedModel> preparedModel;
|
|
createPreparedModel(device, model, &preparedModel);
|
|
if (preparedModel == nullptr) return;
|
|
|
|
EvaluatePreparedModel(preparedModel, testModel, testDynamicOutputShape);
|
|
}
|
|
|
|
void GeneratedTestBase::SetUp() {
|
|
testing::TestWithParam<GeneratedTestParam>::SetUp();
|
|
ASSERT_NE(kDevice, nullptr);
|
|
const bool deviceIsResponsive = kDevice->ping().isOk();
|
|
ASSERT_TRUE(deviceIsResponsive);
|
|
}
|
|
|
|
std::vector<NamedModel> getNamedModels(const FilterFn& filter) {
|
|
return TestModelManager::get().getTestModels(filter);
|
|
}
|
|
|
|
std::vector<NamedModel> getNamedModels(const FilterNameFn& filter) {
|
|
return TestModelManager::get().getTestModels(filter);
|
|
}
|
|
|
|
std::string printGeneratedTest(const testing::TestParamInfo<GeneratedTestParam>& info) {
|
|
const auto& [namedDevice, namedModel] = info.param;
|
|
return gtestCompliantName(getName(namedDevice) + "_" + getName(namedModel));
|
|
}
|
|
|
|
// Tag for the generated tests
|
|
class GeneratedTest : public GeneratedTestBase {};
|
|
|
|
// Tag for the dynamic output shape tests
|
|
class DynamicOutputShapeTest : public GeneratedTest {};
|
|
|
|
TEST_P(GeneratedTest, Test) {
|
|
Execute(kDevice, kTestModel, /*testDynamicOutputShape=*/false);
|
|
}
|
|
|
|
TEST_P(DynamicOutputShapeTest, Test) {
|
|
Execute(kDevice, kTestModel, /*testDynamicOutputShape=*/true);
|
|
}
|
|
|
|
INSTANTIATE_GENERATED_TEST(GeneratedTest,
|
|
[](const TestModel& testModel) { return !testModel.expectFailure; });
|
|
|
|
INSTANTIATE_GENERATED_TEST(DynamicOutputShapeTest,
|
|
[](const TestModel& testModel) { return !testModel.expectFailure; });
|
|
|
|
} // namespace android::hardware::neuralnetworks::V1_2::vts::functional
|